
Computer Science and Engineering College of Engineering The Ohio State University

Rails:
Views and Controllers II

Lecture 31

Computer Science and Engineering The Ohio State University

Recall: Rails Architecture

app/
controllers/

course_roster_controller.rb
CourseRosterController
#wake_up

GET /hi

app/
views/

course_roster/
wake_up.html.erb

Computer Science and Engineering The Ohio State University

Wiring Views and Controllers
 A controller is just an ordinary Ruby class

 Extends ApplicationController
class CourseRosterController <

ApplicationController
 Location: app/controllers/
 Filename: course_roster_controller.rb

 Actions are methods in that class
def wake_up
...
end

 A view is an HTML page (kind of) that corresponds
to that action
 Location: app/views/course_roster/
 Filename: wake_up.html.erb
 Has access to instance variables (e.g., @student) of

corresponding controller!

Computer Science and Engineering The Ohio State University

Example: books/index.html.erb
<h1>Books</h1>

<table>

<tr>

<th>Title</th> <th>Summary</th> <th colspan="3"></th>

</tr>

<% @books.each do |book| %>

<tr>

<td><%= book.title %></td>

<td><%= book.content %></td>

<td><%= link_to 'Show', book %></td>

<td><%= link_to 'Edit', edit_book_path(book) %></td>

<td><%= link_to 'Destroy', book, method: :delete

{ confirm: 'Are you sure?' } %></td>

</tr>

<% end %>

</table>

 <%= link_to 'New book', new_book_path %>

Computer Science and Engineering The Ohio State University

Creating a Response

 There are 3 ways a controller action can
create the HTTP response:
1. Do nothing: defaults are used
2. Call render method
3. Call redirect method

 The first 2 result in HTTP status 200 (OK)
 Body of response is the HTML of the view

 The 3rd results in HTTP status 302
(temporary redirect)

 Other responses are possible too (e.g.,
useful for ajax)

Computer Science and Engineering The Ohio State University

1: Default Response

 If the action does not call render (or
redirect), then render is implicitly
called on corresponding view
class BooksController <

ApplicationController
def index
@books = Book.all

end
end

 Results in call to render
app/views/books/index.html.erb

Computer Science and Engineering The Ohio State University

2: Explicitly Calling Render

 Argument: action whose view should be
rendered

def wake_up
render :show # or render "show"

end
def show ...

 Action (show) does not get executed
 Action could be from another controller

render 'products/show'

 Can return text (or json or xml) directly
render plain: "OK"
render json: @book # calls to_json
render xml: @book # calls to_xml

 Note: render does not end action, so don't
call it twice ("double render" error)

Computer Science and Engineering The Ohio State University

3: Calling Redirect

 Sends response of an HTTP redirect (3xx)
 Default status: 302 (temporary redirect)
 Override for permanent redirection (301)

 Consequence: client (browser) does
another request, this time to the URL
indicated by the redirect response
 New request is a GET by default

 Need URL, can use named route helpers
redirect_to user_path(@user)
redirect_to @user # calls url_for(@user)
redirect_to users_path
redirect_to edit_user_path(@user)

 Or :back to go back in (client’s) history

Computer Science and Engineering The Ohio State University

Redirect vs Render

 Similarity
 Point to a different view
 Neither ends the action
render… and return # force termination

 Difference
 Redirect entails 2 round-trips: request,

action, response, request, action response
 Redirect requires a URL as argument,

Render requires a view (action)

 Common usage for Redirect: POST-
Redirect-GET pattern

Computer Science and Engineering The Ohio State University

GET Blank Form, POST the Form

GET "a blank form"

POST /students
lname: …etc

Computer Science and Engineering The Ohio State University

GET Blank Form, POST the Form

POST /students
lname: …etc

?

Computer Science and Engineering The Ohio State University

GET Blank Form, POST the Form

POST /students
lname: …etc

Computer Science and Engineering The Ohio State University

GET Blank Form, POST the Form

POST /students
lname: …etc

Computer Science and Engineering The Ohio State University

POST-Redirect-GET Pattern

Computer Science and Engineering The Ohio State University

Example of POST-Redirect-GET

class BooksController <

ApplicationController

def create

@book = Book.new(book_params)

if @book.save

redirect_to @book, notice: 'Success!'

else

render :new

end

end

Computer Science and Engineering The Ohio State University

Example of POST-Redirect-GET

class BooksController <

ApplicationController

def create

@book = Book.new(book_params)

if @book.save

redirect_to @book, notice: 'Success!'

else

render :new

end

end

Computer Science and Engineering The Ohio State University

Flash

 A hash returned with redirect response
 Set by controller action issuing redirect
flash[:referral_code] = 1234
 Common keys can be assigned in redirect
redirect_to book_url notice: '...'
redirect_to book_url alert: '...'

 Flash included in client’s next request
 Flash available to next action’s view!

<p id="info"><%= flash[:warn] %>…
 But: flash.now available to first view!
flash.now[:notice] = 'no such book'

Computer Science and Engineering The Ohio State University

Flash: Set, Use, Clear

set flash

use flash
(then clear)

Computer Science and Engineering The Ohio State University

Using Flash in View
display just notice message
<p id="notice"><%= notice %></p>

display all the flash messages
<% if flash.any? %>
<div id="banner">
<% flash.each do |key, message| %>
<div class="flash <%= key %>">

<%= message %>
</div>

<% end %>
</div>

<% end %>

Computer Science and Engineering The Ohio State University

Example of Render vs Redirect

class BooksController <

ApplicationController

def update

@book = Book.find(params[:id])

if @book.update(book_params)

redirect_to @book, notice: 'Success!'

else

render :edit

end

end

Computer Science and Engineering The Ohio State University

Why Is This Wrong?

class BooksController <

ApplicationController

def update

@book = Book.find(params[:id])

if @book.update(book_params)

redirect_to @book, notice: 'Success!'

else

render :edit, notice: 'Try again.'

end

end

Computer Science and Engineering The Ohio State University

Fix: Use Flash.now

class BooksController <

ApplicationController

def update

@book = Book.find(params[:id])

if @book.update(book_params)

redirect_to @book, notice: 'Success!'

else

flash.now[:notice] = 'Try again.'

render :edit

end

end

Computer Science and Engineering The Ohio State University

Code Duplication
class BooksController < ApplicationController

def show
@book = Book.find(params[:id])

end

def edit
@book = Book.find(params[:id])

end

def update
@book = Book.find(params[:id])
. . .

end

Computer Science and Engineering The Ohio State University

DRY, aka Single-Point-of-Control
class BooksController < ApplicationController

before_action :set_book,
only [:show, :edit, :update, :destroy]

def show # method is now empty!
end

def edit # method is now empty!
end

and other actions…

private
def set_book

@book = Book.find(params[:id])
end

end

Computer Science and Engineering The Ohio State University

Sanatizing Inputs
def update

@book = Book.find(params[:id])
if @book.update(book_params)

redirect_to @book, notice: 'Success!'
else

render :edit
end

end

private
def book_params

params.require(:book).permit(:title,
:summary)

end

Computer Science and Engineering The Ohio State University

Recall Partials

 A blob of ERb used in multiple views
 Examples
 Static header used throughout site
 Dynamic sidebar used in many places

 Include in a template (or layout) with:
<%= render 'menu' %>
<%= render 'users/icon' %>

 Filename of partial has "_" prefix
 Default location: app/views

app/views/_menu.html.erb
 Organize into subdirectories with good names

app/views/users/_icon.html.erb

Computer Science and Engineering The Ohio State University

Example: views/layouts/applic…

<!DOCTYPE html>

<html>

… etc

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

Computer Science and Engineering The Ohio State University

Example: views/layouts/_footer

<footer class="footer">
<small>

OSU
</small>
<nav>

<%= link_to "About",

about_path %>
<%= link_to "Contact",

contact_path %>

</nav>
</footer>

Computer Science and Engineering The Ohio State University

Recall: Tricks with Partials

 Content of partial can be customized
with arguments in call

 In call: pass a hash called :locals
<%= render partial: "banner",

locals: { name: "Syllabus,

amount: @price } %>

 In partial: access hash with variables
<h3> <%= name %> </h3>

<p> Costs <%= "$#{amount}.00" %></p>

Computer Science and Engineering The Ohio State University

Parameter Passing to Partials

 Partial also has one implicit local variable
 In the partial, parameter name same as

partial
in partial nav/_menu.html
<p> The price is: <%= menu %></p>

 Argument value assigned explicitly
<%= render partial: 'nav/menu',

object: cost %>

 Idiom: Begin partial by renaming this
parameter

in partial nav/_menu.html
<% price = menu %>

Computer Science and Engineering The Ohio State University

Example: books/index.html.erb
<h1>Books</h1>

<table>

<tr>

<th>Title</th> <th>Summary</th> <th colspan="3"></th>

</tr>

<% @books.each do |book| %>

<tr>

<td><%= book.title %></td>

<td><%= book.content %></td>

<td><%= link_to 'Show', book %></td>

<td><%= link_to 'Edit', edit_book_path(book) %></td>

<td><%= link_to 'Destroy', book, method: :delete

{ confirm: 'Are you sure?' } %></td>

</tr>

<% end %>

</table>

 <%= link_to 'New book', new_book_path %>

Computer Science and Engineering The Ohio State University

Refactored books/index.html.erb
<h1>Books</h1>

<table>

<tr>

<th>Title</th> <th>Summary</th> <th colspan="3"></th>

</tr>

<% @books.each do |book| %>

<%= render 'detail', object: book %>

<% end %>

</table>

 <%= link_to 'New book', new_book_path %>

Computer Science and Engineering The Ohio State University

Corresponding Partial
<tr>

<td><%= detail.title %></td>

<td><%= detail.content %></td>

<td><%= link_to 'Show', detail %></td>

<td><%= link_to 'Edit', edit_book_path(detail) %></td>

<td><%= link_to 'Destroy', detail, method: :delete

confirm: { 'Are you sure?' } %></td>

</tr>

Computer Science and Engineering The Ohio State University

Demo: Scaffolding

 Generate many things at once
 Migration for table in database
 Model for resource
 RESTful routes
 Controller and corresponding methods
 Views for responses

 Command
$ rails g scaffold Student lname:string
buckid:integer

$ rails db:migrate

$ rails server

Computer Science and Engineering The Ohio State University

Summary

 Controller generates a response
 Default: render corresponding view
 Explicit: render some action's view
 Explicit: re-direct
 POST-redirect-GET (aka "get after post")
 Flash passes information to next action

 Reuse of views with partials
 Included with render (e.g., <%= render…)
 Filename is prepended with underscore
 Parameter passing from parent template
 Can iterate over partial by iterating over a

collection

Computer Science and Engineering The Ohio State University

Partials With Collections
 Iteration over partials is common

<% for item in @items %>
<%= render partial: 'item_brief',

object: item %>
<% end %>

 Short-hand: Replace above with
<%= render partial: 'item_brief',

collection: @items %>
 Renders partial once for each element
 Initializes partial local variables each time

 item_brief (the member of the collection)
 item_brief_counter (integer 0..size of collection)

 Can also add separator between each partial
<%= render partial: 'item_brief',

collection: @items,
spacer_template: 'line_space' %>

Computer Science and Engineering The Ohio State University

Partial Super Shorthands

 For a model instance (e.g. @book) in a
template

<%= render @book %>
 Includes _book.html.erb partial
 Passes in @book to partial (as :object)
 Value available as local variable book in partial

 For a model collection (e.g. @books) in a
template

<%= render @books %>
 Call render multiple times, once/member
 Each call uses same partial (_book.html.erb)
 Each call passes in different member as argument
 Value available as local variable book in partial

 Returns nil if collection is empty
<%= render @books || 'No books to see.' %>

