
Computer Science and Engineering College of Engineering The Ohio State University

Rails:
Associations and Validation

Lecture 28

Computer Science and Engineering The Ohio State University

Schemas, Migrations, Models

schema.rb

migrations models

database.yml

database

db:create

db:schema:load

db:migrate

Computer Science and Engineering The Ohio State University

Recall: Migrations

class CreatePosts < ActiveRecord::Migration

def change

create_table :posts do |t|

t.string :name

t.string :title

t.text :content

t.timestamps

end

end

end

Computer Science and Engineering The Ohio State University

Recall: Models

class Post < ApplicationRecord

attr_accessible :name, :title, :content

end

Computer Science and Engineering The Ohio State University

Generating Code: rails generate
 Notice: Two blobs of Ruby code need to be in sync

 Migration (creates table and columns)
db/migrate/xxx_create_students.rb

 Model (with matching name)
app/models/student.rb

 Single point of control: Generate both
simultaneously
$ rails generate model Student

fname:string lname:string buckid:integer
 Use model name (singular) and attributes
 Note: this does not generate the schema.rb (use rails)

 Migrations for table edits can also be generated
$ rails generate migration AddNickNameToStudent
nick:string
 Name is meaningful! (starts with add or remove)
 Creates a migration that changes students table

Computer Science and Engineering The Ohio State University

Result of generate model

class CreateStudents < ActiveRecord::Migration
def change
create_table :students do |t|
t.string :fname
t.string :lname
t.integer :buckid

t.timestamps
end

end
end

class Student < ApplicationRecord
end

Computer Science and Engineering The Ohio State University

Demo with rails console

$ rails new demo # creates directory
no schema, migrations, or models

$ cd demo
$ rails generate model Student \
fname:string lname:string buckid:integer
see db/migrate, app/models

$ rails console
> Student.methods # lots available!
> Student.all # error, no table
> s = Student.new # will this work?

Computer Science and Engineering The Ohio State University

Demo with rails console

$ rails new demo # creates directory
no schema, migrations, or models

$ cd demo
$ rails generate model Student \
fname:string lname:string buckid:integer
$ rails console
> Student.methods # lots available!
> Student.find :all # error, no table
> s = Student.new # error, no table
$ rails db:migrate # creates schema.rb
$ rails console
> Student.all #=> []

Computer Science and Engineering The Ohio State University

Working With Models

> s = Student.new

> s2 = Student.new fname: "Jo"

> s3 = Student.new fname: "Xi",

buckid: 23

> Student.all #=> ?

Computer Science and Engineering The Ohio State University

Working With Models

> s = Student.new

> s2 = Student.new fname: "Jo"

> s3 = Student.new fname: "Xi",

buckid: 23

> Student.all #=> [] still

> s.save

> Student.all #=> [<id: 1, …>]

> s.fname = "Mary"

> s.save

Computer Science and Engineering The Ohio State University

Associations (1:N Relationship)

id
(key)

buckid
(integer)

team_id
(foreign key)

1 22352022 2

3 334432 2

4 34822039 6

students

id
(key)

name
(string)

1 Wicked Wicky

2 The Happy Crew

6 No Names

teams

Computer Science and Engineering The Ohio State University

Invariants

 A student belongs to exactly 1 team
 Weaker: A student belongs to at most 1 team

 Same representation for either invariant
 A column (of foreign keys) in students table

 Maintaining stronger invariant
 Students can only be added with team_id set

to something valid
 Deleting a team deletes member students!

 Maintaining weaker invariant
 Students can be added with null team_id
 Deleting a team null-ifies members' team_id

Computer Science and Engineering The Ohio State University

Rails Migration and Models
class AddTeamForeignKeys < ActiveRecord::Migration
def change

add_reference :students, :team,
index: true # for quick load

end
end

class Student < ApplicationRecord
belongs_to :team # note singular form

have Student#team method
end

class Team < ApplicationRecord
has_many :students # note plural form

have Team#students method
end

Computer Science and Engineering The Ohio State University

Association Methods

 Belongs_to creates method for accessing
owner
@student = Student.find 1 #=> 22352022
@student.team #=> 'The Happy Crew'
@student.team.name = 'The(tm) Happy Crew'

 Has_many creates method for accessing
members
@team = Team.find 1
@team.students #=> array of students
@team.students.first
@team.students.size
@team.students.destroy_all
@team.students.any? { |s| ... }

Computer Science and Engineering The Ohio State University

Asymmetry in Writes to Assoc.

 Add a student to a team’s association:
student automatically saved (assuming
team is stored in database)
t = Team.find 1
t.students #=> []
t.students << Student.new # gets an id
t.students #=> [#<Student id: 1, …>]

 Assign a team student’s association:
student is not automatically saved
s = Student.find 1
s.team = my_team
s.reload #=> s's team is unchanged

Computer Science and Engineering The Ohio State University

Modifiers for belongs_to

class Student < ApplicationRecord
belongs_to :greek_house,
optional: true
allows foreign key to be null

belongs_to :project_group,
class_name: 'Team'
default is Project_Group

belongs_to :major,
foreign_key: 'OSU_code'
default is major_id

belongs_to :team,
touch: :membership_updated

end

Computer Science and Engineering The Ohio State University

Modifiers for has_many

class Team < ApplicationRecord
has_many :students,

limit: 5,
max number of members
dependent: :destroy,
what happens to dependents
when parent is destroyed?
class_name: 'OSUStudent'
default is Student

end

Computer Science and Engineering The Ohio State University

More Relationships

 1:1 (one-to-one)
 Use belongs_to with has_one

 has_one is just has_many with limit of 1

 Same asymmetry in writing exists

 N:M (many-to-many)
 A third, intermediary table is used with 2

columns (for foreign keys from two tables)
 In rails, use has_many :through

association

Computer Science and Engineering The Ohio State University

Validations

 An invariant on the data in a single table
 Every student has a (non-null) buckid
 Buckids are unique
 Team names are less than 30 characters
 Usernames match a given regular expression

 To maintain invariant:
 Must be true initially
 Must be satisfied by each insertion

 These validations are in the model
 A model instance can be checked
 Invalid objects can not be saved
student = Student.new lname: 'Vee'
student.valid? #=> false (no buckid)
student.save #=> false

Computer Science and Engineering The Ohio State University

Rails Implementation

 Model object has an errors attribute
 This attribute is a hash (of problems)

 Failing a validity check adds an item to
the errors hash
 Empty hash corresponds to valid object
 Each attribute is a key in the errors hash,

plus there's a general key, :base
s.errors[:buckid] = "is not a number"

 The valid? method does the following:
 Empties errors hash
 Runs validations
 Returns errors.empty?

Computer Science and Engineering The Ohio State University

Example

class Post < ApplicationRecord

validates :name, presence: true

validates :title, presence: true,

length: { minimum: 5,

maximum: 50 }

end

Computer Science and Engineering The Ohio State University

Validates Method in Model
validates :column, condition
 Uniqueness

uniqueness: true
uniqueness: {message: 'Username already taken'}

 Non-nullness (not the same as being true!)
presence: {message: 'Title needed'}

 Truth of a boolean field
acceptance: {message: 'Accept the terms'}

 Matching a regular expression
format: {with: /[A-Z].*/, message: …}
format: /[A-Za-z0-9]+/

 Being a number
numericality: {only_integer: true}

 Having a length
length: {minimum: 5}

Computer Science and Engineering The Ohio State University

Alternative: Declarative Style

 Special methods for each flavor of
validation
validates_uniqueness_of :username

validates_presence_of :password

validates_acceptance_of :terms

validates_format_of :name,

with: /[A-Z].*/

validates_numericality_of :buckid,

only_integer: true

Computer Science and Engineering The Ohio State University

Summary

 Code generation
 Database schema generated by schema.rb
 Schema.rb generated by rails on migrations
 Migrations and models can be generated by rails

 Associations
 1:N (or 1:1) relationships via foreign keys
 Rails methods belongs_to, has_many
 Create association attributes, which can be read

and written
 Asymmetry in writing owner vs member

 Validations
 Invariants checked before saving
 Errors hash contains list of problems
 Declarative style for common case checks
 Custom validity checkers possible too

