
Computer Science and Engineering  College of Engineering  The Ohio State University

Rails:
Models

Lecture 27

Computer Science and Engineering  The Ohio State University

Recall: Rails Architecture

Computer Science and Engineering  The Ohio State University

Recall: Rails Architecture

Computer Science and Engineering  The Ohio State University

Mapping Tables to Objects

 General strategy for OO languages
 Table in database -- a class
 Table columns -- attributes of the class
 Table rows -- instances of class (objects)

 Application works with database using
ordinary language syntax
 Class methods for finding row(s) in table

 Example: Java POJOs, Rails models

Computer Science and Engineering  The Ohio State University

Directory Structure of Rails
depot/
..../app
......../controllers
......../helpers
......../models
......../views
............../layouts
..../config
..../db
..../lib
..../log
..../public
..../storage
..../test
..../tmp
..../vendor
....Gemfile
....package.json
....README.md
....Rakefile

Computer Science and Engineering  The Ohio State University

A Bit of Configuration
 Which database to use?

 SQLite is the easiest (no setup!)
 MySQL has better performance
 PostgreSQL favored for Heroku deployment

 Different environments: development, test,
production
 Default (for rake command) is development

 See config/database.yml
default: &default
adapter: sqlite3
pool: <%= ENV.fetch("RAILS_MAX_THREADS") {5} %>
timeout: 5000

development:
<<: *default
database: db/development.sqlite3

Computer Science and Engineering  The Ohio State University

Database Tables

 A database is a collection of tables
 Naming convention: Table names plural

 Each table has a list of columns
 Each column has a name and a type
 A table has a list of rows

fname
(string)

lname
(string)

buckid
(integer)

Marco Pantani 22352022

Primo Carnera 334432

Cher 34822039

students

Computer Science and Engineering  The Ohio State University

Database Column Types

SQLite Postgresql MySQL

blob bytea blob

boolean boolean tinyint(1)

date date date

datetime timestamp datetime

decimal decimal decimal

float float float

integer integer int(11)

varchar(255) character
varying

varchar(255)

text text text

datetime time time

datetime timestamp datetime

Computer Science and Engineering  The Ohio State University

Table Constraints

 Invariants on table entries beyond
type information
 “lname is not null”
 “buckid is unique”

 Often useful to have a unique identifier
for each row (a primary key)
 Easy: Include an extra (integer) column
 Database responsible for assigning this

value every time a row is added
 No way to change this value after creation

Computer Science and Engineering  The Ohio State University

Primary Key With Autoincrement

id
(key)

fname
(string)

lname
(string)

buckid
(integer)

1 Marco Pantani 22352022

3 Primo Carnera 334432

4 Cher 34822039

students

Computer Science and Engineering  The Ohio State University

Linking Tables

 Different tables can be related to each
other
 “Each student has exactly 1 major”
 “Each student can own 1 (or more) vehicles”

 Keys are used to encode this relationship
 Include a column in table X containing keys

from table Y ("foreign keys")
 For examples:

 Students table includes a column identifying a
student's major

 Vehicles table includes a column identifying a
(student) owner

 Association is an invariant between tables

Computer Science and Engineering  The Ohio State University

Association: Students & Vehicles

id
(key)

fname
(string)

lname
(string)

buckid
(integer)

major
(foreign key)

1 Marco Pantani 22352022 3

3 Primo Carnera 334432 3

4 Cher 34822039 3

students

id
(key)

owner
(foreign key)

license
(string)

1 1 K3F 443L

2 4 F8L 220J

6 4 GOHBUX

vehicles

Computer Science and Engineering  The Ohio State University

Associations

id
(key)

major
(for. key)

1 3

3 3

4 3

id
(key)

owner
(for. key)

1 1

2 4

6 4

id
(key)

2

3

5

6

7

studentsvehicles programs

Computer Science and Engineering  The Ohio State University

Schema

 Definition of table structure
 Table name
 Column names and types
 Constraints

 Usually database manager-specific
 See db/schema.rb for Ruby-based

schema description
 Allows independence from particular DB

manager
 Schema is versioned by timestamp (really

by migration…)

Computer Science and Engineering  The Ohio State University

Example schema.rb
ActiveRecord::Schema.define(version:

2018_03_19_144259) do

create_table "students", force: :cascade
do |t|

t.string "name"
t.integer "buckid"
t.datetime "created_at", null: false
t.datetime "updated_at", null: false

end

end

Computer Science and Engineering  The Ohio State University

Migrations

 Q. Who writes schema.rb?
 A. It is generated!
 Golden rule: Never edit schema.rb directly
 Instead, write a migration

 A migration is Ruby code (a class) that
represents a change in schema
 Create new tables (including column

names and column types)
 Modify existing tables (adding/removing

columns, or changing associations)
 Delete (“drop”) existing tables

Computer Science and Engineering  The Ohio State University

Migration Classes

 See db/migrate
 Filename consists of
 Timestamp (UTC) of creation
 Class name (descriptive of delta)
 Example: class CreatePosts in

20180319145307_create_posts.rb
 Consequence: Migrations are run in a

consistent order
 Deltas do not commute, so order is important

 Class extends ActiveRecord::Migration
 Contains method change
 This method invoked by rails db:migrate

Computer Science and Engineering  The Ohio State University

Example Migration Class

class CreatePosts < ActiveRecord::Migration

def change

create_table :posts do |t|

t.string :name

t.string :title

t.text :content

t.timestamps

end

end

end

Computer Science and Engineering  The Ohio State University

Result of Running This Migration

:id
(key)

:name
(string)

:title
(string)

:content
(text)

:created_at
(datetime)

:updated_at
(datetime)

:posts

Computer Science and Engineering  The Ohio State University

Column Type Mappings

Migration Ruby SQLite Postgresql MySQL

:binary String blob bytea blob

:boolean Boolean boolean boolean tinyint(1)

:date Date date date date

:datetime Time datetime timestamp datetime

:decimal BigDecimal decimal decimal decimal

:float Float float float float

:integer Integer integer integer int(11)

:string String varchar(255) character
varying

varchar(255)

:text String text text text

:time Time datetime time time

:timestamp Time datetime timestamp datetime

Computer Science and Engineering  The Ohio State University

Schema Deltas In Migrations

 In addition to creating tables, the change
method can also change existing tables
 Modify columns of an existing table

add_column, remove_column, rename_column,
change_column

 Modify and delete tables
change_table, drop_table

 Example: xxx_add_author_to_posts.rb
class AddAuthorToPosts <

ActiveRecord::Migration
def change

add_column :posts, :author, :string
end

end

Computer Science and Engineering  The Ohio State University

Migrations as History

 Change defined by migration can be undone
 Migrations give a linear history of deltas
 Schema is the result of applying them (in order)

 Can move forward/backward in history
 Create database only (no schema) defined in

config/database.yml
$ rails db:create

 Update schema.rb (compare its version number to
list of migrations) and apply to database
$ rails db:migrate

 Rollback schema.rb to earlier point in history
$ rails db:rollback

 Load schema defined in db/schema.rb
$ rails db:schema:load

Computer Science and Engineering  The Ohio State University

Schemas, Migrations, Models

schema.rb

migrations models

database.yml

database

db:create

db:schema:load

db:migrate

db:schema:dump

Computer Science and Engineering  The Ohio State University

Migrations vs Schema

 Golden rule: Never edit schema.rb
 It is regenerated every time you do a

migration
 Every change in schema means writing a

migration
 Commit schema.rb to version control
 Deployment in fresh environment means

loading schema, not reliving the full migration
history

 Commit migrations to version control
 Once a migration has been shared, to undo it

you should create a new migration (preserve
the linear history)

Computer Science and Engineering  The Ohio State University

Models

 Programmatic way for application to
interact with database
 Collection of Ruby classes
 Extend ApplicationRecord
 Found in app/models

 Each class corresponds to a table
 Note: Models are singular (tables are plural)
 Includes attributes corresponding to columns

implicitly
class Post < ApplicationRecord
attr_accessible :name,:title,:content

end

Computer Science and Engineering  The Ohio State University

Class Methods for Models

 Create a new instance with new
p1 = Post.new
p2 = Post.new author: 'Xi', title: 'Hola'
 Warning: this only creates the model (object)

it does not modify the database
 Create instance and add it to database

p3 = Post.create author: 'Zippy'

 Retrieve particular row(s) from table
@post = Post.find 4 # search by id
@post = Post.find_by author: 'Xi'
@student = Student.find_by buckid: 543333
@blog = Post.all
@post = Post.first
@post = Post.last

Computer Science and Engineering  The Ohio State University

Instance Methods for Models

 To save a model (object) as a row in the
database

p = Post.new author: 'Xi'
p.save # commits change to database

 Read/write attributes like an ordinary
Ruby class

@post = Post.find_by author: 'Xi'
t = @post.title #=> nil
@post.title = 'A Successful Project'
@post.save # don't forget to save!

 To delete a row from the table
@post.destroy # no save needed

Computer Science and Engineering  The Ohio State University

Summary
 Databases: Tables, columns, rows
 Structure defined in a schema
 Rails uses Ruby code to generate schema

 Migrations
 Ruby code describing change to schema
 Syntax look declarative

 Models
 Ruby classes that mirror database tables
 Class names from table (singular vs plural)
 Attributes from columns

 Code generation
 Database schema generated by schema.rb
 Schema.rb generated by rails on migrations
 Migrations and models can be generated by

rails

