
Computer Science and Engineering College of Engineering The Ohio State University

JavaScript:
DOM and Events

Lecture 26

Computer Science and Engineering The Ohio State University

Objects are Everywhere

 Global variables in JavaScript are a lie
 Implicitly part of some “global object”,

provided by execution environment
 See FF Developer Tools: Console

Computer Science and Engineering The Ohio State University

Window Object

 For JavaScript running in a browser,
implicit global object is the window
>> this

<- Window

 Many properties, including
 location (url of displayed document)
 status (text in status bar of browser)
 history

 innerHeight, innerWidth
 alert(), prompt()
 document (tree of displayed document)

Computer Science and Engineering The Ohio State University

Document is a Tree

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe

Computer Science and Engineering The Ohio State University

DOM: “Document Object Model”

 DOM is a language-neutral API for
working with HTML (and XML) documents
 Different programming languages have

different bindings to this API
 But all are similar to JavaScript’s API

 In JavaScript, tree nodes objects
 A tree node (i.e. an element with attributes)

<input type="text" name="address">
 A JavaScript object with many properties

{ tagName: "INPUT",
type: "text",
name: "address", /* lots more… */ }

Computer Science and Engineering The Ohio State University

DOM History
 Ad hoc DOM existed from the beginning of

JavaScript
 Core purpose of client-side execution: Enable user

interaction with the document
 Need a connection between programming language

(JavaScript) and the document
 DOM 1 specification (W3C) in '98

 Standardized mapping treeobjects and functions for
modifying the tree

 DOM 2 ('00): added styles and event handling
 DOM 3 ('04): fancier tree traversal & indexing

schemes
 DOM “4” ('15…):

 Actually just a “living document”
 Some non-backwards-compatible changes

Computer Science and Engineering The Ohio State University

Simplest Mapping

 window’s document property
 write(): outputs text to document body
 forms: array of forms in a page
 elements[]: array of widgets in a form

 anchors: all anchors in document
 links: all links in document
 getElementById(string): find a node

 etc…

Computer Science and Engineering The Ohio State University

Document is a Tree

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe

Computer Science and Engineering The Ohio State University

Node is a JavaScript Object

 Properties
 parentNode, childNodes, firstChild,

lastChild, nextSibling, previousSibling
 innerHTML
 tagName

 HTML upper case (A), XML lower case (a)
 attributes, name, id, class
 style

 Hyphenated property in CSS (e.g., “font-size”)
becomes camelCase in JavaScript (e.g., “fontSize”)

 Methods
 appendChild(node), removeChild(node),

insertBefore(node)
 hasAttribute(attr), removeAttribute(attr),

getAttribute(attr), setAttribute(attr)
 getElementsByTagName(name)

Computer Science and Engineering The Ohio State University

Demo: Web Console

>> let b = document.body;

>> b.tagName;

>> b.childNodes;

>> b.style.backgroundColor = "green";

>> let x = document.getElementById

("page-content");

>> x.innerHTML;

>> x.innerHTML = "<h1>Hello</h1>";

Computer Science and Engineering The Ohio State University

How to Find a Node in Tree

1. Hard coding with “flat” techniques
 Array of children

document.forms[0].elements[0]
 Downside: too brittle
 If the document structure changes a little,

everything breaks
2. Using an element's name attribute
 In HTML:

<form name="address"> …
<input name="zip"... /> </form>

 In JavaScript:
document.address.zip

 Downside: direct path still hard coded

Computer Science and Engineering The Ohio State University

How to Find a Node in Tree

3. To get a unique element: document
method getElementById
 In HTML

<td id="shipping">...</td>

 In JavaScript
document.getElementById("shipping")

 Downside: every element you want to find
needs unique ID

4. Combination: element ID for form,
arrays for options in selection element

Computer Science and Engineering The Ohio State University

Example
<form id="wheels">
<input type="checkbox" name="vehicles"

value="car" /> Car
<input type="checkbox" name="vehicles"

value="truck" /> Truck
<input type="checkbox" name="vehicles"

value="bike" /> Bike
</form>

let numChecked = 0;
let elt = document.getElementById("wheels");
for (let i = 0; i < elt.vehicles.length; i++) {
if (elt.vehicles[i].checked)

numChecked++;
}

Computer Science and Engineering The Ohio State University

Interactive Documents

 To make a document interactive, you
need:
 Widgets (ie HTML elements)
 Buttons, windows, menus, etc.

 Events
 Mouse clicked, window closed, button clicked,

etc.

 Event listeners
 Listen (ie wait) for events to be triggered,

and then perform actions to handle them

Computer Science and Engineering The Ohio State University

Events Drive the Flow of Control

 This style is event driven programming
 Event handling occurs as a loop:
 Program is idle
 User performs an action
 Eg moves the mouse, clicks a button, types

in a text box, selects an item from menu, …

 This action generates an event (object)
 That event is sent to the program, which

responds
 Code executes, could update document

 Program returns to being idle

Computer Science and Engineering The Ohio State University

Handling Events Mechanism

 Three parts of the event-handling
mechanism
 Event source: the widget with which the user

interacts
 Event object: encapsulated information about the

occurred event
 Event listener: a function that is called when an

event occurs, and responds to the event

HTML Element aHandler()
event object

Computer Science and Engineering The Ohio State University

Programmer Tasks

 Define an event handler
 Any function can be an event handler
 Often need information about the

triggering event in order to know what
response is needed

 Register handler with source element
 Detect event and invoke handler
 Ha! Just kidding, you do NOT do this

Computer Science and Engineering The Ohio State University

Simple Example: Color Swaps
<p>This page illustrates changing colors</p>
<form>
<p>
<label> background:
<input type="text" name="back" size="10"
onchange="foo('bg', this.value)" />

</label>

<label> foreground:
<input type="text" name="fore" size="10"
onchange="foo('fg', this.value)" />

</label>
</p>

</form>

Computer Science and Engineering The Ohio State University

Color Swaps (JavaScript)

function foo(place, color) {

if (place === "bg")

document.body.style.backgroundColor =

color;

else

document.body.style.color = color;

}

Computer Science and Engineering The Ohio State University

Event Propagation

 Elements are nested in tree
 When an event occurs, which

element's handler(s) is(are) notified?
 First, propagation path is calculated:

from root to smallest element
 Then event dispatch occurs in 3 phases

1. Capture (going down the path)
2. Target (smallest element)
3. Bubble (going up the path, reverse of 1)

Computer Science and Engineering The Ohio State University

http://www.w3.org/TR/DOM-Level-3-Events/

Computer Science and Engineering The Ohio State University

Bubbling Up

 Usually, handling is done in phase 2
and 3

 Example: mouse click on hyperlink
 Handler for <a> element displays a pop-

up ("Are you sure you want to leave?")
 Once that is dismissed, event flows up to

enclosing <p> element, then <div> then…
etc. until it arrives at root element of DOM

 This root element (i.e. window) has a
handler that loads the new document in
the current window

Computer Science and Engineering The Ohio State University

Programmer Tasks

 Define a handler
 Easy, any function will do

 Register handler
 Multiple ways to link (HTML) tree elements

with (JavaScript) functions

 Be triggered by the event
 Ha! Still kidding

 Get information about triggering event
 Multiple (incompatible) ways for handler

to get the event object

Computer Science and Engineering The Ohio State University

Registering an Event Handler

 Three techniques, ordered from:
 Oldest (most brittle, most universal) to
 Newest (most general, least standard)

1. Inline (link in HTML itself)
…

2. Direct property (link in JavaScript)
let e = … // find source element in tree
e.onclick = foo;

3. Chained (In JavaScript, browser
differences)
let e = … // find source element in tree
e.addEventListener("click", foo, false);

Computer Science and Engineering The Ohio State University

Inline Registration (pre DOM)

 Use HTML attributes (vary by element type)
 For window: onload, onresize, onunload,…
 Forms & elements: onchange, onblur, onfocus,

onsubmit,…
 Mouse events: onclick, onmouseover,

onmouseout,…
 Keyboard events: onkeypress, onkeyup,…

 The value of these attributes is JavaScript
code to be executed
 Normally just a function invocation

 Example
…

 Advantage: Quick, easy, universal
 Disadvantage: mixes code with content

Computer Science and Engineering The Ohio State University

Direct Registration (DOM 1)

 Use properties of DOM element objects
 onchange, onblur, onfocus,…
 onclick, onmouseover, onmouseout,…
 onkeypress, onkeyup,…

 Set this property to appropriate handler
let e = … // find source element in tree
e.onclick = foo;

 Note: no parentheses!
e.onclick() = foo; // what does this do?
e.onclick = foo(); // what does this do?

 Disadvantage? No arguments to handler
 Not a problem, handler gets event object

 Real disadvantage: 1 handler/element

Computer Science and Engineering The Ohio State University

Example

let x =
document.getElementsByTagName("div");

for (let i = 0; i < x.length; i++) {

x[i].onmouseover = function () {

this.style.backgroundColor="red"

}

x[i].onmouseout = function () {

this.style.backgroundColor="blue"

}

}

Computer Science and Engineering The Ohio State University

Chained Registration (DOM 2)

 Each element has a collection of handlers
 Add/remove handler to this collection

let e = … //find source element in tree
e.addEventListener("click", foo, false);

 Note: no "on" in event names, just "click"
 Third parameter: true for capture phase
 Disadvantage: browser incompatibilities

e.addEventListener() // FF, Webkit, IE9+
e.attachEvent() // IE5-8

 Some browser compatibility issues with DOM
and events

 Solution: Libraries
 Eg jQuery, Dojo, Prototype, YUI, MooTools,…

Computer Science and Engineering The Ohio State University

Example

let x =
document.getElementsByTagName("div");
for (var i = 0; i < x.length; i++) {
x[i].addEventListener ("click",
function () {
this.act = this.act || false;
this.act = !this.act;
this.style.backgroundColor =
(this.act ? "red" : "gray");

},
false);

}

Computer Science and Engineering The Ohio State University

Task: Getting Event Object

 Most browsers: parameter to handler
function myHandler(event)

 IE: event is property of window
 Common old-school idiom:

function myHandler(event) {

event = event || window.event;

… etc …

 Again, libraries are the most robust
way to deal with these issues

Computer Science and Engineering The Ohio State University

Summary

 DOM: Document Object Model
 Programmatic way to use document tree
 Get, create, delete, and modify nodes

 Event-driven programming
 Source: element in HTML (a node in DOM)
 Handler: JavaScript function
 Registration: in-line, direct, chained
 Event is available to handler for inspection

