
Computer Science and Engineering  College of Engineering  The Ohio State University

JavaScript:
DOM and Events

Lecture 26

Computer Science and Engineering  The Ohio State University

Objects are Everywhere

 Global variables in JavaScript are a lie
 Implicitly part of some “global object”,

provided by execution environment
 See FF Developer Tools: Console

Computer Science and Engineering  The Ohio State University

Window Object

 For JavaScript running in a browser,
implicit global object is the window
>> this

<- Window

 Many properties, including
 location (url of displayed document)
 status (text in status bar of browser)
 history

 innerHeight, innerWidth
 alert(), prompt()
 document (tree of displayed document)

Computer Science and Engineering  The Ohio State University

Document is a Tree

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe

Computer Science and Engineering  The Ohio State University

DOM: “Document Object Model”

 DOM is a language-neutral API for
working with HTML (and XML) documents
 Different programming languages have

different bindings to this API
 But all are similar to JavaScript’s API

 In JavaScript, tree nodes  objects
 A tree node (i.e. an element with attributes)

<input type="text" name="address">
 A JavaScript object with many properties

{ tagName: "INPUT",
type: "text",
name: "address", /* lots more… */ }

Computer Science and Engineering  The Ohio State University

DOM History
 Ad hoc DOM existed from the beginning of

JavaScript
 Core purpose of client-side execution: Enable user

interaction with the document
 Need a connection between programming language

(JavaScript) and the document
 DOM 1 specification (W3C) in '98

 Standardized mapping treeobjects and functions for
modifying the tree

 DOM 2 ('00): added styles and event handling
 DOM 3 ('04): fancier tree traversal & indexing

schemes
 DOM “4” ('15…):

 Actually just a “living document”
 Some non-backwards-compatible changes

Computer Science and Engineering  The Ohio State University

Simplest Mapping

 window’s document property
 write(): outputs text to document body
 forms: array of forms in a page
 elements[]: array of widgets in a form

 anchors: all anchors in document
 links: all links in document
 getElementById(string): find a node

 etc…

Computer Science and Engineering  The Ohio State University

Document is a Tree

html
lang: en

head body

title meta
charset: utf-8

p

a
href: planet.html

Something Short
and Sweet

Hello

element
attr name:
attr value
text

World

! br img
src: pic.png
alt: a globe

Computer Science and Engineering  The Ohio State University

Node is a JavaScript Object

 Properties
 parentNode, childNodes, firstChild,

lastChild, nextSibling, previousSibling
 innerHTML
 tagName

 HTML upper case (A), XML lower case (a)
 attributes, name, id, class
 style

 Hyphenated property in CSS (e.g., “font-size”)
becomes camelCase in JavaScript (e.g., “fontSize”)

 Methods
 appendChild(node), removeChild(node),

insertBefore(node)
 hasAttribute(attr), removeAttribute(attr),

getAttribute(attr), setAttribute(attr)
 getElementsByTagName(name)

Computer Science and Engineering  The Ohio State University

Demo: Web Console

>> let b = document.body;

>> b.tagName;

>> b.childNodes;

>> b.style.backgroundColor = "green";

>> let x = document.getElementById

("page-content");

>> x.innerHTML;

>> x.innerHTML = "<h1>Hello</h1>";

Computer Science and Engineering  The Ohio State University

How to Find a Node in Tree

1. Hard coding with “flat” techniques
 Array of children

document.forms[0].elements[0]
 Downside: too brittle
 If the document structure changes a little,

everything breaks
2. Using an element's name attribute
 In HTML:

<form name="address"> …
<input name="zip"... /> </form>

 In JavaScript:
document.address.zip

 Downside: direct path still hard coded

Computer Science and Engineering  The Ohio State University

How to Find a Node in Tree

3. To get a unique element: document
method getElementById
 In HTML

<td id="shipping">...</td>

 In JavaScript
document.getElementById("shipping")

 Downside: every element you want to find
needs unique ID

4. Combination: element ID for form,
arrays for options in selection element

Computer Science and Engineering  The Ohio State University

Example
<form id="wheels">
<input type="checkbox" name="vehicles"

value="car" /> Car
<input type="checkbox" name="vehicles"

value="truck" /> Truck
<input type="checkbox" name="vehicles"

value="bike" /> Bike
</form>

let numChecked = 0;
let elt = document.getElementById("wheels");
for (let i = 0; i < elt.vehicles.length; i++) {
if (elt.vehicles[i].checked)

numChecked++;
}

Computer Science and Engineering  The Ohio State University

Interactive Documents

 To make a document interactive, you
need:
 Widgets (ie HTML elements)
 Buttons, windows, menus, etc.

 Events
 Mouse clicked, window closed, button clicked,

etc.

 Event listeners
 Listen (ie wait) for events to be triggered,

and then perform actions to handle them

Computer Science and Engineering  The Ohio State University

Events Drive the Flow of Control

 This style is event driven programming
 Event handling occurs as a loop:
 Program is idle
 User performs an action
 Eg moves the mouse, clicks a button, types

in a text box, selects an item from menu, …

 This action generates an event (object)
 That event is sent to the program, which

responds
 Code executes, could update document

 Program returns to being idle

Computer Science and Engineering  The Ohio State University

Handling Events Mechanism

 Three parts of the event-handling
mechanism
 Event source: the widget with which the user

interacts
 Event object: encapsulated information about the

occurred event
 Event listener: a function that is called when an

event occurs, and responds to the event

HTML Element aHandler()
event object

Computer Science and Engineering  The Ohio State University

Programmer Tasks

 Define an event handler
 Any function can be an event handler
 Often need information about the

triggering event in order to know what
response is needed

 Register handler with source element
 Detect event and invoke handler
 Ha! Just kidding, you do NOT do this

Computer Science and Engineering  The Ohio State University

Simple Example: Color Swaps
<p>This page illustrates changing colors</p>
<form>
<p>
<label> background:
<input type="text" name="back" size="10"
onchange="foo('bg', this.value)" />

</label>

<label> foreground:
<input type="text" name="fore" size="10"
onchange="foo('fg', this.value)" />

</label>
</p>

</form>

Computer Science and Engineering  The Ohio State University

Color Swaps (JavaScript)

function foo(place, color) {

if (place === "bg")

document.body.style.backgroundColor =

color;

else

document.body.style.color = color;

}

Computer Science and Engineering  The Ohio State University

Event Propagation

 Elements are nested in tree
 When an event occurs, which

element's handler(s) is(are) notified?
 First, propagation path is calculated:

from root to smallest element
 Then event dispatch occurs in 3 phases

1. Capture (going down the path)
2. Target (smallest element)
3. Bubble (going up the path, reverse of 1)

Computer Science and Engineering  The Ohio State University

http://www.w3.org/TR/DOM-Level-3-Events/

Computer Science and Engineering  The Ohio State University

Bubbling Up

 Usually, handling is done in phase 2
and 3

 Example: mouse click on hyperlink
 Handler for <a> element displays a pop-

up ("Are you sure you want to leave?")
 Once that is dismissed, event flows up to

enclosing <p> element, then <div> then…
etc. until it arrives at root element of DOM

 This root element (i.e. window) has a
handler that loads the new document in
the current window

Computer Science and Engineering  The Ohio State University

Programmer Tasks

 Define a handler
 Easy, any function will do

 Register handler
 Multiple ways to link (HTML) tree elements

with (JavaScript) functions

 Be triggered by the event
 Ha! Still kidding

 Get information about triggering event
 Multiple (incompatible) ways for handler

to get the event object

Computer Science and Engineering  The Ohio State University

Registering an Event Handler

 Three techniques, ordered from:
 Oldest (most brittle, most universal) to
 Newest (most general, least standard)

1. Inline (link in HTML itself)
…

2. Direct property (link in JavaScript)
let e = … // find source element in tree
e.onclick = foo;

3. Chained (In JavaScript, browser
differences)
let e = … // find source element in tree
e.addEventListener("click", foo, false);

Computer Science and Engineering  The Ohio State University

Inline Registration (pre DOM)

 Use HTML attributes (vary by element type)
 For window: onload, onresize, onunload,…
 Forms & elements: onchange, onblur, onfocus,

onsubmit,…
 Mouse events: onclick, onmouseover,

onmouseout,…
 Keyboard events: onkeypress, onkeyup,…

 The value of these attributes is JavaScript
code to be executed
 Normally just a function invocation

 Example
…

 Advantage: Quick, easy, universal
 Disadvantage: mixes code with content

Computer Science and Engineering  The Ohio State University

Direct Registration (DOM 1)

 Use properties of DOM element objects
 onchange, onblur, onfocus,…
 onclick, onmouseover, onmouseout,…
 onkeypress, onkeyup,…

 Set this property to appropriate handler
let e = … // find source element in tree
e.onclick = foo;

 Note: no parentheses!
e.onclick() = foo; // what does this do?
e.onclick = foo(); // what does this do?

 Disadvantage? No arguments to handler
 Not a problem, handler gets event object

 Real disadvantage: 1 handler/element

Computer Science and Engineering  The Ohio State University

Example

let x =
document.getElementsByTagName("div");

for (let i = 0; i < x.length; i++) {

x[i].onmouseover = function () {

this.style.backgroundColor="red"

}

x[i].onmouseout = function () {

this.style.backgroundColor="blue"

}

}

Computer Science and Engineering  The Ohio State University

Chained Registration (DOM 2)

 Each element has a collection of handlers
 Add/remove handler to this collection

let e = … //find source element in tree
e.addEventListener("click", foo, false);

 Note: no "on" in event names, just "click"
 Third parameter: true for capture phase
 Disadvantage: browser incompatibilities

e.addEventListener() // FF, Webkit, IE9+
e.attachEvent() // IE5-8

 Some browser compatibility issues with DOM
and events

 Solution: Libraries
 Eg jQuery, Dojo, Prototype, YUI, MooTools,…

Computer Science and Engineering  The Ohio State University

Example

let x =
document.getElementsByTagName("div");
for (var i = 0; i < x.length; i++) {
x[i].addEventListener ("click",
function () {
this.act = this.act || false;
this.act = !this.act;
this.style.backgroundColor =
(this.act ? "red" : "gray");

},
false);

}

Computer Science and Engineering  The Ohio State University

Task: Getting Event Object

 Most browsers: parameter to handler
function myHandler(event)

 IE: event is property of window
 Common old-school idiom:

function myHandler(event) {

event = event || window.event;

… etc …

 Again, libraries are the most robust
way to deal with these issues

Computer Science and Engineering  The Ohio State University

Summary

 DOM: Document Object Model
 Programmatic way to use document tree
 Get, create, delete, and modify nodes

 Event-driven programming
 Source: element in HTML (a node in DOM)
 Handler: JavaScript function
 Registration: in-line, direct, chained
 Event is available to handler for inspection

