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What is an Object?

 Property: a key/value pair
 aka name/value pair

 Object: a partial map of properties
 Keys must be unique

 Creating an object, literal notation
let myCar = { make: "Acura",

year: 1996,
plate: "NKR462" };

 To access/modify an object's properties:
myCar.make = "Ford";  // cf. Ruby
myCar["year"] = 2006;
let str = "ate";
myCar["pl" + str] == "NKR463"; //=> true
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Arrays vs Associative Arrays
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Dynamic Size, Just Like Arrays

 Objects can grow
myCar.state = "OH"; // 4 properties

let myBus = {}; 

myBus.driver = true; // adds a prop

myBus.windows = [2, 2, 2, 2];

 Objects can shrink
delete myCar.plate;

// myCar is now {make: "Ford",

// year: 2006, state: "OH"}
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Testing Presence of Key

 Boolean operator: in
propertyName in object

 Evaluates to true iff object has the 
indicated property key

"make" in myCar //=> true

"speedometer" in myCar //=> false

"OH" in myCar //=> false

 Property names are strings
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Iterating Over Properties

 Iterate using for…in syntax
for (property in object) {

…object[property]…

}

 Notice [] to access each property
for (p in myCar) {

document.write(p + ": " + myCar[p]);

}
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Methods

 The value of a property can be:
 A primitive (boolean, number, string, null…)
 A reference (object, array, function)

let temp = function(sound) {
play(sound);
return 0;

}
myCar.honk = temp;

 More succinctly:
myCar.honk = function(sound) {

play(sound);
return 0;

}
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Example: Method

let myCar = {

make: "Acura",

year: 1996,

plate: "NKR462",

honk: function(sound) {

play(sound);

return 0;

}

};



Computer Science and Engineering   The Ohio State University

Object Properties

"Acura"

1996

"NKR462"

make

year

plate

honk
play(sound);
return 0;

myCar



Computer Science and Engineering   The Ohio State University

Keyword “this” in Functions

 Recall distinguished formal parameter
x.f(y, z); //x is the distinguished argmt.

 Inside a function, keyword “this”
function report() {

return this.plate + this.year;
}

 At run-time, “this” is set to the distinguished 
argument of invocation
myCar = { plate: "NKR462", year: 1996 };
yourCar = { plate: 340, year: 2013 };
myCar.register = report;
yourCar.info = report;
myCar.register();     //=> "NKR4621996"
yourCar.info();       //=> 2353
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Constructors

 Any function can be a constructor
 When calling a function with “new”:

1. Make a brand new (empty) object
2. Call the function, with the new object as the 

distinguished parameter
3. Implicitly return the new object to caller

 A “constructor” often adds properties to the 
new object simply by assigning them

function Dog(name) {
this.name = name;  // adds 1 property
// no explicit return

}
let furBall = new Dog("Rex");

 Naming convention: Functions intended to 
be constructors are capitalized
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Example

function Circle(x, y, radius) { 
this.centerX = x; 
this.centerY = y; 
this.radius = radius; 
this.area = function() {

return Math.PI * this.radius *
this.radius; 

}  
}
let c = new Circle(10, 12, 2.45); 
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Creating a Circle Object
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... Etc ...
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Prototypes

 Every object has a prototype
 A hidden, indirect property ([[Prototype]])

 What is a prototype?
 Just another object!  Like any other!

 When accessing a property (i.e. obj.p)
 First look for p in obj
 If not found, look for p in obj's prototype
 If not found, look for p in that object's 

prototype!
 And so on, until reaching the basic system 

object
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Prototype Chaining
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Class-Based Inheritance
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Example

 Consider two objects
let dog = { name: "Rex", age: 3 };

let pet = { color: "blue" };

 Assume pet is dog's prototype
// dog.name is "Rex" 

// dog.color is "blue" (follow chain) 

pet.color = "brown"; 

// dog.color is "brown" (prop changed)

dog.color = "green"; 

// pet.color is still "brown" (hiding)
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Delegation to Prototype
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Prototypes Are Dynamic Too

 Prototypes can add/remove properties
 Changes are felt by all children

// dog is { name: "Rex", age: 3 }

// dog.mood & pet.mood are undefined

pet.mood = "happy"; // add to pet

// dog.mood is now "happy" too

pet.bark = function() {

return this.name + " is " + this.mood;

}

dog.bark(); //=> "Rex is happy"

pet.bark(); //=> "undefined is happy"
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Delegation to Prototype
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Connecting Objects & Prototypes

 How does an object get a prototype?
let c = new Circle();

 Answer
1. Every function has a prototype property
 Do not confuse with hidden [[Prototype]]!

2. Object's prototype link—[[Prototype]]—
is set to the function's prototype property

 When a function Foo is used as a 
constructor, i.e. new Foo(), the value 
of Foo's prototype property is the 
prototype object of the created object
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Prototypes And Constructors
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Idiom: Methods in Prototype

function Dog(n, a) { 
this.name = n; 
this.age = a; 

}; 

let canine = { 
bark: function(sound) { 
return this.name + "says" + sound; 

} 
}; 

Dog.prototype = canine; 
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Idiom: Methods in Prototype

function Dog(n, a) { 
this.name = n; 
this.age = a; 

}; 

Dog.prototype = { 
bark: function(sound) { 
return this.name + "says" + sound; 

} 
}; 
// set prototype to new anonymous object
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Idiom: Methods in Prototype

function Dog(n, a) { 
this.name = n; 
this.age = a; 

}; 

Dog.prototype.bark = function(sound) { 
return this.name + "says" + sound; 

};

// better: extend existing prototype
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Idiom: Methods in Prototype
class Dog {
constructor(n, a) { 
this.name = n; 
this.age = a;

} 

bark(sound) { 
return this.name + "says" + sound; 

}

}

// best: ES6 classes (syntactic sugar)
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Methods in Prototype
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Idiom: Classical Inheritance

function Animal() { ... };
function Dog() { ... };

Dog.prototype = new Animal();
// create prototype for future dogs

Dog.prototype.constructor = Dog;
// set prototype's constructor
// properly (ie should point to Dog())
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Setting up Prototype Chains
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Summary

 Objects as associative arrays
 Partial maps from keys to values
 Can dynamically add/remove properties
 Can iterate over properties

 Method = function-valued property
 Keyword this for distinguished parameter

 Constructor = any function
 Prototypes are "parent" objects
 Delegation up the chain of prototypes
 Prototype is determined by constructor
 Prototypes can be modified


