JavaScript:
Objects, Methods, Prototypes

Lecture 25

C()mputer Science and Englneermg B The Ohio State Unlvers1ty

Property: a key/value pair

B aka name/value pair

Object: a partial map of properties
B Keys must be unique

Creating an object, literal notation
let myCar = { make: "Acura",
year: 1996,
plate: "NKR462" };
To access/modify an object's properties:
myCar .make = "Ford"; // cf. Ruby
myCar |["year"] = 2006;
let str = "ate";
myCar["pl" + str] == "NKR463"; //=> true

Object Properties

Computer Science and Engineering B The Ohio State University

myCar

year 2006

plate | "NKR463"

. N N N N N N N N N §N N N N §N N §N !
Y
AN

Arrays vs Associative Arrays

ity

Computer Science and Engineering B The Ohio State Univers:

————————
true
true
false
———————4

I 1

I 1

[= AU

I < c A 1

| = ™M |

I 1

I 1

I Q @) n = I

I o S 5 T

| © i o |

1 Q o i

1 v 1

I o 1

e e e e e e e e e o o .
‘ IIIIIIIIIIIII ‘
1 I
| Q |
1| S| S| 9|
| | - | - O |
— = 4 y— —
1 I
1 I

Dynamic Size, Just Like Arrays

Comp ity

Objects can grow
myCar.state = "OH"; // 4 properties
let myBus = {};
myBus.driver = true; // adds a prop

myBus.windows = [2, 2, 2, 2];

Objects can shrink
delete myCar.plate;

// myCar is now {make: "Ford",
// year: 2006, state: "OH"}

Object Properties

Computer Science and Engineering B The Ohio State University

myCar

year 2006

plate | "NKR463"

. N N N N N N N N N §N N N N §N N §N !
Y
AN

Object Properties

Computer Science and Engineering B The Ohio State University

myCar myCar.state = "OH";

year 2006

Y
AN

. N N N N N N N N N §N N N N §N N §N !
Y
AN

Object Properties

Computer Science and Engineering B The Ohio State University

myCar delete myCar.plate;

. N N N N N N N N N §N N N N §N N §N !
Y
AN

Testing Presence of Key

Comput

Boolean operator: in
propertyName in object

Evaluates to true iff object has the
indicated property key

"make" in myCar //=> true

"speedometer" in myCar //=> false
"OH" in myCar //=> false

B Property names are strings

gineering ® The Ohio State Universi

Iterating Over Properties

ering B The Ohio State University

Iterate using for...in syntax

for (property in object) {
..object[property]..

}

Notice [] to access each property
for (p in myCar) {

document.write(p + ": " + myCar|p]);

Computer Science and Engineering B The Ohio State University

The value of a property can be:
B A primitive (boolean, number, string, null...)
B A reference (object, array, function)
let temp = function (sound) {
play (sound) ;
return O;

}

myCar. = temp;
More succinctly:
myCar. = function(sound) {

play (sound) ;
return 0O;

Example: Method

let myCar = {
make: "Acura',
year: 1996,
plate: "NKR462",
honk: function(sound) {
play (sound) ;

return 0;

Object Properties

Computer Science and Engineering B The Ohio State University

myCar

year 1996

play (sound) ;
4>:: return O; I

Y
AN

. N N N N N N N N N §N N N N §N N §N !
Y
AN

-y F r r rr Fr r r Fr rr r §F |

Keyword “this” in Functions

Computer Science and Engineering B The Ohio State University

O Recall distinguished formal parameter
x.f£(y, z); //x is the distinguished argmt.

O Inside a function, keyword “this”

function () {
return this.plate + this.year;

}

O At run-time, “this” is set to the distinguished
argument of invocation
myCar = { plate: '"NKR462", year: 1996 };
yourCar = { plate: 340, year: 2013 };
myCar.register = ;
yourCar.info = ;
myCar.register () ; //=> "NKR4621996"
yourCar.info () ; //=> 2353

Object Properties

Computer Science and Engineering B The Ohio State University

myCar yourCar

year

register

[em=———————————

report

Constructors

Computer Science and Engineering B The Ohio State University

O Any function can be a constructor

O When calling a function with “new”:
1. Make a brand new (empty) object

2. Call the function, with the new object as the
distinguished parameter

3. Implicitly return the new object to caller

O A “constructor” often adds properties to the
new object simply by assigning them
function Dog (name) {
this.name = name; // adds 1 property
// no explicit return
}
let furBall = new Dog("Rex") ;

O Naming convention: Functions intended to
be constructors are capitalized

Example

function Circle(x, y, radius) {
this.centerX = x;
this.centerY = y;
this.radius = radius;
this.area = function () {
return Math.PI * this.radius *

this.radius;

}
let ¢ = new Circle (10, 12, 2.45);

Creating a Circle Object

Comput

gineering ® The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Circle

1 this.centerX = x;
''this.centerY = y; u

Creating a Circle Object

Comput

gineering ® The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Circle

1 this.centerX = x;
''this.centerY = y; u

Creating a Circle Object

Computer Science and Engineering B The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Circle
[e e e i
1 S 1
| centerX | 10 ! _
: — < : 1 this.centerX = x;
. 1]
:centeﬁ(12 : “thls.centerY =v, "
1
I >—< : “::::EEC;::::::::::
' radius| 2.45 !
1 1
: — I
I m-=-T=zZ===Z=Z==Z=Z=====-=2)
! area b ! 'return Math.PI *
1 \—)\l\ n
: : 'this.radius * T
----------------- "

nthis.radius I

Creating a Circle Object

Computer Science and Engineering B The Ohio State University

C@ let ¢ = new Circle (10, 12, 2.45);

Circle
[e e e i
1 S 1
| centerX | 10 ! _
: — < : 1 this.centerX = x;
. 1]
:centeﬁ(12 : “thls.centerY =v, "
1
I >—< : “::::EEC;::::::::::
' radius| 2.45 !
1 1
: — I
I m-=-T=zZ===Z=Z==Z=Z=====-=2)
! area b ! 'return Math.PI *
1 \—)\l\ n
: : 'this.radius * T
----------------- "

nthis.radius I

Creating a Circle Object

Computer Science and Engineering B The Ohio State University

let ¢ = new Circle (10, 12, 2.45);

Circle

e e e e i
1 S 1
| centerX | 10 ! _
: — < : 1 this.centerX = x;
. 1]
:centeﬁ(12 : “thls.centerY =v, "
1
I >—< : “::::EEC;::::::::::
' radius| 2.45 !
1 1
: — I
I m-=-T=zZ===Z=Z==Z=Z=====-=2)
! area b ! 'return Math.PI *
1 \—)\l\ n
: : 'this.radius * T
----------------- "

nthis.radius I

Prototypes

m] Science and Engineering B The Ohio State University

Every object has a prototype
B A hidden, indirect property ([[Prototype]])

What is a prototype?
B Just another object! Like any other!

When accessing a property (i.e. obj.p)
B First look for p in obj
B If not found, look for p in obj's prototype

B If not found, look for p in that object's
prototype!

B And so on, until reaching the basic system
object

ity

Computer Science and Engineering B The Ohio State Univers:

Prototype Chaining

false

Class-Based Inheritance

Computer Science and Engineering B The Ohio State University

interfaces extends
implements
classes > end
- ~_—— extends -
static static static

instantiates

objects

B R

Example

Consider two objects
let dog = { name: "Rex", age: 3 };

let pet = { color: "blue" };
Assume pet is dog's prototype

// dog.name is "Rex"
// dog.color is "blue" (follow chain)

pet.color = "brown'";

// dog.color is "brown" (prop changed)
dog.color = "green";
// pet.color is still "brown" (hiding)

Delegation to Prototype

Computer Science and Engineering B The Ohio State University

dog

r--------

Prototypes Are Dynamic Too

Computer Science and Engineering B The Ohio State University

Prototypes can add/remove properties

Changes are felt by all children
// dog is { name: "Rex', age: 3 }
// dog.mood & pet.mood are undefined
pet.mood = "happy"; // add to pet
// dog.mood is now "happy" too
pet.bark = function() ({
return this.name + " is " + this.mood;

}
dog.bark(); //=> "Rex is happy"

pet.bark(); //=> "undefined is happy"

Delegation to Prototype

dog

F

Computer Science and Enginee:

ring ® The Ohio State University

dog.bark() ;
pet.bark () ;

”return this.name
,| _l_ " is "
I + this.mood;

Connecting Objects & Prototypes

Computer Science an

How does an object get a prototype?
let ¢ = new Circle();

Answer
1. Every function has a prototype property
O Do not confuse with hidden [[Prototype]]!
2. Object's prototype /link— [[Prototype]] —
is set to the function's prototype property
When a function Foo is used as a
constructor, /i.e. new Foo (), the value
of Foo's prototype property is the
prototype object of the created object

Prototypes And Constructors

Co nd Engineering ® The Ohio State University

darea

constructor

" prototype
Circle‘ k "

n this.centerX =
n this.centerY = y; "
::---EtC... T

Prototypes And Constructors

Computer Science and Engineering B The Ohio State University

c = new Circle()

darea

constructor

" prototype
Circle‘ k "

n this.centerX =
n this.centerY = y; "
::---EtC... T

Prototypes And Constructors

Computer Science and Engineering B The Ohio State University

c = new Circle()

darea

constructor

" prototype
Circle‘ k "

n this.centerX =
n this.centerY = y; "
::---EtC... T

Prototypes And Constructors

Computer Science and Engineering B The Ohio State University

¢ = new Circle()

iy

! I)
1

| centerX ! |
! ! area

¢ k %E centerY | 12 i i
! :)1 I constructor
' radius| 2.45 || e —
I ——

" prototype
Chtka‘ ‘.r-)

n this.centerX =
n this.centerY = y; "
::---EtC... T

Idiom: Methods in Prototype

Compute neering ® The Ohio State University

function Dog(n, a) {
this.name = n;
this.age = a;

};

let canine = {
bark: function (sound) {
return this.name + "says" + sound;

};

Dog.prototype = canine;

Idiom: Methods in Prototype

Compute Engineering ® The Ohio State University

function Dog(n, a) {
this.name = n;
this.age = a;

};

let canine = {
bark: function (sound) {
return this.name + "says" + sound;

};

Dog.prototype = canine;

Idiom: Methods in Prototype

Compute Engineering ® The Ohio State University

function Dog(n, a) {
this.name = n;
this.age = a;

};

Dog.prototype = {
bark: function (sound) {
return this.name + "says" + sound;

};
// set prototype to new anonymous object

Idiom: Methods in Prototype

Compute Engineering ® The Ohio State University

function Dog(n, a) {
this.name = n;
this.age = a;

};

Dog.prototype.bark = function(sound) ({
return this.name + "says" + sound;

};

// better: extend existing prototype

Idiom: Methods in Prototype

Compute Engineering ® The Ohio State University

class Dog {
constructor(n, a) {
this.name = n;
this.age = a;

}

bark (sound) {
return this.name + "says" + sound;

}
}

// best: ES6 classes (syntactic sugar)

Methods in Prototype

romteneg
T S—

| |
E name | "Rex" |} bark
e
o ace| 6 i
1 - 1 L e e e e e
I —

Dog @\;: prototype

this.name
" this.age =

! rototype
constructor L\' P P

Computer Science and Engineering B The Ohio State University

1
Hreturn this.name

n+ "says" + sound;!
e oo o oo o o o o e o e e e e e

Com T nce and Engineerin

Idiom: Classical Inheritance

e Ohio State University

function Animal() { ... };
function Dog() { ... };

Dog.prototype = new Animal () ;
// create prototype for future dogs

Dog.prototype.constructor = Dog;
// set prototype's constructor
// properly (ie should point to Dog())

Setting up Prototype Chains

Computer Science and Engineering B The Ohio State University

new Animal ()

., prototype

Dog| @& | ~~~""°"°"""°=°"°=°7=°7°°

Animal

Summary

Objects as associative arrays

B Partial maps from keys to values

B Can dynamically add/remove properties
B Can iterate over properties

Method = function-valued property

B Keyword this for distinguished parameter

Constructor = any function
Prototypes are "parent” objects
B Delegation up the chain of prototypes

B Prototype is determined by constructor
B Prototypes can be modified

