
Computer Science and Engineering College of Engineering The Ohio State University

JavaScript:
Objects, Methods, Prototypes

Lecture 25

Computer Science and Engineering The Ohio State University

What is an Object?

 Property: a key/value pair
 aka name/value pair

 Object: a partial map of properties
 Keys must be unique

 Creating an object, literal notation
let myCar = { make: "Acura",

year: 1996,
plate: "NKR462" };

 To access/modify an object's properties:
myCar.make = "Ford"; // cf. Ruby
myCar["year"] = 2006;
let str = "ate";
myCar["pl" + str] == "NKR463"; //=> true

Computer Science and Engineering The Ohio State University

Object Properties

"Ford"

2006

"NKR463"

make

year

plate

myCar

Computer Science and Engineering The Ohio State University

Arrays vs Associative Arrays

4

"hi"

3.14
true

true

false

0

1

2

0

1

2

3

4

"hi"

3.14
true

true

false

0

1

2

age

greeting

doors

pi

Computer Science and Engineering The Ohio State University

Dynamic Size, Just Like Arrays

 Objects can grow
myCar.state = "OH"; // 4 properties

let myBus = {};

myBus.driver = true; // adds a prop

myBus.windows = [2, 2, 2, 2];

 Objects can shrink
delete myCar.plate;

// myCar is now {make: "Ford",

// year: 2006, state: "OH"}

Computer Science and Engineering The Ohio State University

Object Properties

"Ford"

2006

"NKR463"

make

year

plate

myCar

Computer Science and Engineering The Ohio State University

Object Properties

"Ford"

2006

"NKR463"

"OH"

make

year

plate

state

myCar myCar.state = "OH";

Computer Science and Engineering The Ohio State University

Object Properties

"Ford"

2006

"OH"

make

year

state

myCar delete myCar.plate;

Computer Science and Engineering The Ohio State University

Testing Presence of Key

 Boolean operator: in
propertyName in object

 Evaluates to true iff object has the
indicated property key

"make" in myCar //=> true

"speedometer" in myCar //=> false

"OH" in myCar //=> false

 Property names are strings

Computer Science and Engineering The Ohio State University

Iterating Over Properties

 Iterate using for…in syntax
for (property in object) {

…object[property]…

}

 Notice [] to access each property
for (p in myCar) {

document.write(p + ": " + myCar[p]);

}

Computer Science and Engineering The Ohio State University

Methods

 The value of a property can be:
 A primitive (boolean, number, string, null…)
 A reference (object, array, function)

let temp = function(sound) {
play(sound);
return 0;

}
myCar.honk = temp;

 More succinctly:
myCar.honk = function(sound) {

play(sound);
return 0;

}

Computer Science and Engineering The Ohio State University

Example: Method

let myCar = {

make: "Acura",

year: 1996,

plate: "NKR462",

honk: function(sound) {

play(sound);

return 0;

}

};

Computer Science and Engineering The Ohio State University

Object Properties

"Acura"

1996

"NKR462"

make

year

plate

honk
play(sound);
return 0;

myCar

Computer Science and Engineering The Ohio State University

Keyword “this” in Functions

 Recall distinguished formal parameter
x.f(y, z); //x is the distinguished argmt.

 Inside a function, keyword “this”
function report() {

return this.plate + this.year;
}

 At run-time, “this” is set to the distinguished
argument of invocation
myCar = { plate: "NKR462", year: 1996 };
yourCar = { plate: 340, year: 2013 };
myCar.register = report;
yourCar.info = report;
myCar.register(); //=> "NKR4621996"
yourCar.info(); //=> 2353

Computer Science and Engineering The Ohio State University

Object Properties

"NKR462"

1996

plate

year

register

return this.plate
+ this.year;

myCar

report

340

2013

plate

year

info

yourCar

Computer Science and Engineering The Ohio State University

Constructors

 Any function can be a constructor
 When calling a function with “new”:

1. Make a brand new (empty) object
2. Call the function, with the new object as the

distinguished parameter
3. Implicitly return the new object to caller

 A “constructor” often adds properties to the
new object simply by assigning them

function Dog(name) {
this.name = name; // adds 1 property
// no explicit return

}
let furBall = new Dog("Rex");

 Naming convention: Functions intended to
be constructors are capitalized

Computer Science and Engineering The Ohio State University

Example

function Circle(x, y, radius) {
this.centerX = x;
this.centerY = y;
this.radius = radius;
this.area = function() {

return Math.PI * this.radius *
this.radius;

}
}
let c = new Circle(10, 12, 2.45);

Computer Science and Engineering The Ohio State University

Creating a Circle Object

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering The Ohio State University

Creating a Circle Object

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering The Ohio State University

Creating a Circle Object

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

area

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering The Ohio State University

Creating a Circle Object

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

c

area

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering The Ohio State University

Creating a Circle Object

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

c

area

let c = new Circle(10, 12, 2.45);

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering The Ohio State University

Prototypes

 Every object has a prototype
 A hidden, indirect property ([[Prototype]])

 What is a prototype?
 Just another object! Like any other!

 When accessing a property (i.e. obj.p)
 First look for p in obj
 If not found, look for p in obj's prototype
 If not found, look for p in that object's

prototype!
 And so on, until reaching the basic system

object

Computer Science and Engineering The Ohio State University

Prototype Chaining

4

"hi"

3.14

true

true

false

0

1

2

age

greeting

doors

pi

toString

hasOwnProperty

push

pop

etc…

Computer Science and Engineering The Ohio State University

Class-Based Inheritance

static static static

interfaces

classes

objects

extends

extends

implements

instantiates

Computer Science and Engineering The Ohio State University

Example

 Consider two objects
let dog = { name: "Rex", age: 3 };

let pet = { color: "blue" };

 Assume pet is dog's prototype
// dog.name is "Rex"

// dog.color is "blue" (follow chain)

pet.color = "brown";

// dog.color is "brown" (prop changed)

dog.color = "green";

// pet.color is still "brown" (hiding)

Computer Science and Engineering The Ohio State University

Delegation to Prototype

"brown""Rex"

3

colorname

age

"green"color

dog pet

Computer Science and Engineering The Ohio State University

Prototypes Are Dynamic Too

 Prototypes can add/remove properties
 Changes are felt by all children

// dog is { name: "Rex", age: 3 }

// dog.mood & pet.mood are undefined

pet.mood = "happy"; // add to pet

// dog.mood is now "happy" too

pet.bark = function() {

return this.name + " is " + this.mood;

}

dog.bark(); //=> "Rex is happy"

pet.bark(); //=> "undefined is happy"

Computer Science and Engineering The Ohio State University

Delegation to Prototype

"brown""Rex"

3

colorname

age

dog pet

"happy"mood

bark
return this.name

+ " is "
+ this.mood;

dog.bark();
pet.bark();

Computer Science and Engineering The Ohio State University

Connecting Objects & Prototypes

 How does an object get a prototype?
let c = new Circle();

 Answer
1. Every function has a prototype property
 Do not confuse with hidden [[Prototype]]!

2. Object's prototype link—[[Prototype]]—
is set to the function's prototype property

 When a function Foo is used as a
constructor, i.e. new Foo(), the value
of Foo's prototype property is the
prototype object of the created object

Computer Science and Engineering The Ohio State University

Prototypes And Constructors

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering The Ohio State University

Prototypes And Constructors

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

c = new Circle()

Computer Science and Engineering The Ohio State University

Prototypes And Constructors

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

c = new Circle()

Computer Science and Engineering The Ohio State University

Prototypes And Constructors

10

12

2.45

centerX

centerY

radius

area

constructor

prototype

this.centerX = x;
this.centerY = y;
... Etc ...

c

Circle

c = new Circle()

Computer Science and Engineering The Ohio State University

Idiom: Methods in Prototype

function Dog(n, a) {
this.name = n;
this.age = a;

};

let canine = {
bark: function(sound) {
return this.name + "says" + sound;

}
};

Dog.prototype = canine;

Computer Science and Engineering The Ohio State University

Idiom: Methods in Prototype

function Dog(n, a) {
this.name = n;
this.age = a;

};

let canine = {
bark: function(sound) {
return this.name + "says" + sound;

}
};

Dog.prototype = canine;

Computer Science and Engineering The Ohio State University

Idiom: Methods in Prototype

function Dog(n, a) {
this.name = n;
this.age = a;

};

Dog.prototype = {
bark: function(sound) {
return this.name + "says" + sound;

}
};
// set prototype to new anonymous object

Computer Science and Engineering The Ohio State University

Idiom: Methods in Prototype

function Dog(n, a) {
this.name = n;
this.age = a;

};

Dog.prototype.bark = function(sound) {
return this.name + "says" + sound;

};

// better: extend existing prototype

Computer Science and Engineering The Ohio State University

Idiom: Methods in Prototype
class Dog {
constructor(n, a) {
this.name = n;
this.age = a;

}

bark(sound) {
return this.name + "says" + sound;

}

}

// best: ES6 classes (syntactic sugar)

Computer Science and Engineering The Ohio State University

Methods in Prototype

"Rex"

6

name

age

bark

constructor

prototype

this.name = x;
this.age = a;

Dog

return this.name
+ "says" + sound;

prototype

r = new Dog() Dog.prototype

Computer Science and Engineering The Ohio State University

Idiom: Classical Inheritance

function Animal() { ... };
function Dog() { ... };

Dog.prototype = new Animal();
// create prototype for future dogs

Dog.prototype.constructor = Dog;
// set prototype's constructor
// properly (ie should point to Dog())

Computer Science and Engineering The Ohio State University

Setting up Prototype Chains

constructor

prototype

Animal

constructor

prototype

Dog

new Animal()

"Rex"name

new Dog()

Computer Science and Engineering The Ohio State University

Summary

 Objects as associative arrays
 Partial maps from keys to values
 Can dynamically add/remove properties
 Can iterate over properties

 Method = function-valued property
 Keyword this for distinguished parameter

 Constructor = any function
 Prototypes are "parent" objects
 Delegation up the chain of prototypes
 Prototype is determined by constructor
 Prototypes can be modified

