
Computer Science and Engineering  College of Engineering  The Ohio State University

JavaScript:
Array API

Lecture 24

Computer Science and Engineering  The Ohio State University

Arrays: Basics

 Numbered starting at 0
 Indexed with []

 Property length is # of elements
let sum = 0;

for (let i = 0; i < n.length; i++) {

sum += n[i];

}

Computer Science and Engineering  The Ohio State University

Array Instantiation/Initialization

 Instantiate with new
let n = new Array(3);

 Initially, each element is undefined
 Note: Elements can be a mix of types

n[0] = 10;
n[1] = "hi";
n[2] = new Array(100);

 Array literals usually preferred
let n = [10, 20, 30, 40];
let m = ["hi", , "world", 3.14];
[3, "hi", 17, [3, 4]].length == 4

Computer Science and Engineering  The Ohio State University

Dynamic Size

 Arrays can grow
let n = ["tree", 6, -2];

n.length == 3 //=> true

n[8] = 17;

n.length == 9 //=> true

 Arrays can shrink
n.length = 2;

// n is now ["tree", 6]

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

let n = [];

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

n

let n = [];

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

n

n[0] = 4;

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

40
n

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

40
n

n[3] = 3.14;

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

4

undefined

undefined

3.14

0

1

2

3

n

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

4

undefined

undefined

3.14

0

1

2

3

n

n[1] = "hi";

Computer Science and Engineering  The Ohio State University

Arrays are Dynamic

4

"hi"

undefined

3.14

0

1

2

3

n

Computer Science and Engineering  The Ohio State University

Accessors: Searching

 Find occurrence: indexOf/lastIndexOf
 Returns -1 if not found

indexOf(element[, startIndex])

lastIndexOf(element[, lastIndex])

 Optional parameter: start/end index
 Uses strict equality (===)

let i = n.indexOf(elt);

while (i != -1) {

report(i);

i = n.indexOf(elt, i + 1);

}

Computer Science and Engineering  The Ohio State University

Accessors: Extracting

 None of the following change the array
 Return a new array/string with result

 Concatenate: concat
concat(a1, a2, …, aN)

let d = n.concat(n);

 Extract a sub-section: slice
slice(startIndex, endIndex)

k = n.slice(1, 3); // k is n[1], n[2]

 Combine into string: join
join(separator)

s = n.join(" "); // default is ","

Computer Science and Engineering  The Ohio State University

Mutators: Growing/Shrinking

 Add/remove from end: push/pop
let n = [10, 20];

newLength = n.push(30, 40); //=> 4

lastValue = n.pop(); //=> 40

 Add/remove from beginning:
unshift/shift
let n = [10, 20];

newLength = n.unshift(30, 40); //=> 4

firstValue = n.shift(); //=> 30

 Push/shift gives FIFO queue

Computer Science and Engineering  The Ohio State University

Push Example

function findAll(n, elt) {

let indices = [];

let i = n.indexOf(elt);

while (i != -1) {

indices.push(i);

i = n.indexOf(elt, i + 1);

}

return indices;

}

Computer Science and Engineering  The Ohio State University

Mutators: Delete/Insert/Replace

 Delete/insert/replace sub-array: splice
splice (index, howMany[, e1, e2, …, eN])
 Modifies array (cf. slice, an accessor)
 Returns array of removed elements
let magic = [34, -17, 6, 4];
let removed = magic.splice(2, 0, 13);
// removed is []
// magic is [34, -17, 13, 6, 4]

removed = magic.splice(3, 1, "hi", "yo");
// removed is [6]
// magic is [34, -17, 13, "hi", "yo", 4]

Computer Science and Engineering  The Ohio State University

Mutators: Rearrange

 Transpose all elements: reverse
let n = [5, 300, 90];

n.reverse(); // n is [90, 300, 5]

 Order all elements: sort
let f = ["blue", "beluga","killer"];

f.sort(); // f is

// ["beluga", "blue", "killer"]

n.sort(); // n is [300, 5, 90]

Computer Science and Engineering  The Ohio State University

Mutators: Rearrange

 Transpose all elements: reverse
let n = [5, 300, 90];

n.reverse(); // n is [90, 300, 5]

 Order all elements: sort
let f = ["blue", "beluga", "killer"];

f.sort(); // f is

// ["beluga", "blue", "killer"]

n.sort(); // n is [300, 5, 90]

 Problem: Default ordering is based on
string representation (lexicographic)

 Solution: Use a function that compares

Computer Science and Engineering  The Ohio State University

Sorting with Comparator

 A comparator (a, b) returns a number
 < 0 iff a is smaller than b
 == 0 iff a is same size as b
 > 0 iff a is greater than b

 Examples
function lenOrder(a, b) {
return a.length – b.length;

}
function compareNumbers(a, b) {
return a – b;

}

Computer Science and Engineering  The Ohio State University

Sorting with Comparator

 Optional argument to sort
sort([compareFunction])

 Example
names.sort(lenOrder);

n.sort(compareNumbers);

n.sort(function(a, b) {

return a - b;

});

Computer Science and Engineering  The Ohio State University

Iteration: Logical Quantification

function isBig(elt, index, array) {

return (elt >= 10);

}

 Universal quantification: every
[5, 8, 13, 44].every(isBig); // false

[51, 18, 13, 44].every(isBig); // true

 Existential quantification: some
[5, 8, 13, 44].some(isBig); // true

[5, 8, 1, 4].some(isBig); // false

 Neither modifies original array

Computer Science and Engineering  The Ohio State University

Iteration: Filter

 Pare down an array based on a
condition: filter

filter(predicate)

predicate(element, index, array)

 Returns a new array, with elements
that satisfied the predicate
 Does not modify the original array

 Example
t = [12, 5, 8, 13, 44].filter(isBig);

Computer Science and Engineering  The Ohio State University

Iteration: Map

 Transform an array into a new array,
element by element: map
 E.g. an array of strings into an array of

their lengths
 ["hi", "there", "world"]  [2, 5, 5]

map(callback)

callback(element, index, array)

 Example
len = names.map(function(elt, i, a) {

return elt.length

});

Computer Science and Engineering  The Ohio State University

Recall: Ruby Map

 Transform an array into a new array,
element by element

 Uses block to calculate each new value
a.map { |item| block }

a

resulting
array

item

block

Computer Science and Engineering  The Ohio State University

Iteration: For Each

 Similar to map, but preferred for side-
effects and changing an array in place

forEach(callback)

callback(element, index, array)

 Example
function logArrayElts(elt, i, array) {

console.log("[" + i + "] = " + elt);

}

[2, 5, 9].forEach(logArrayElts);

Computer Science and Engineering  The Ohio State University

Iteration: Reduce

 Applies a binary operator between all the
elements of the array
 E.g., to sum the elements of an array
 [15, 10, 8]  0 + 15 + 10 + 8  33

reduce(callback[, initialValue])
callback(previous, elt, index, array)

 Examples
function sum(a, b) { return a + b; }
function acc(a, b) { return a + 2 * b; }
[2, 3, 7, 1].reduce(sum) //=> ?
[2, 3, 7, 1].reduce(sum, 0) //=> ?
[2, 3, "7", 1].reduce(sum) //=> ?
[2, 3, 7, 1].reduce(acc) //=> ?
[2, 3, 7, 1].reduce(acc, 0) //=> ?

Computer Science and Engineering  The Ohio State University

Recall: Ruby’s Reduction Chain

a

resulting
value

item

block

acc

init

Computer Science and Engineering  The Ohio State University

Iteration: Reduce

 Examples with anonymous functions
[2, 3].reduce(function(a, b) {

return a + b;

}); //#=> ?

[[0, 1], [2, 3], [4, 5]].reduce(
function(a, b) {

return a.concat(b);

}); //#=> ?

Computer Science and Engineering  The Ohio State University

Your Turn

Given: roster of students (an array)

Write a JavaScript program that outputs
an html list of students (name and
midterm score) whose gpa is > 3.0, such
that the list is sorted by midterm score

1. Xi Chen (85)
2. Mary Smith (80)
3. Alessandro Reis (74)

Computer Science and Engineering  The Ohio State University

Example Input
let roster =
[{ name: "Mary Smith",

gpa: 3.7,
midterm: 80 },

{ name: "Xi Chen",
gpa: 3.5,
midterm: 85 },

{ name: "Alessandro Reis",
gpa: 3.2,
midterm: 74 },

{ name: "Erin Senda",
gpa: 3.0,
midterm: 68 }];

Computer Science and Engineering  The Ohio State University

Summary

 Array accessors and mutators
 Accessors: indexOf, slice
 Mutators for extraction: push/pop,

unshift/shift, splice
 Mutators for rearranging: reverse, sort

 Array iteration
 Quantification: every, some, filter
 Map (foreach for side-effects & mutating)
 Reduce

