
Computer Science and Engineering College of Engineering The Ohio State University

JavaScript:
Array API

Lecture 24

Computer Science and Engineering The Ohio State University

Arrays: Basics

 Numbered starting at 0
 Indexed with []

 Property length is # of elements
let sum = 0;

for (let i = 0; i < n.length; i++) {

sum += n[i];

}

Computer Science and Engineering The Ohio State University

Array Instantiation/Initialization

 Instantiate with new
let n = new Array(3);

 Initially, each element is undefined
 Note: Elements can be a mix of types

n[0] = 10;
n[1] = "hi";
n[2] = new Array(100);

 Array literals usually preferred
let n = [10, 20, 30, 40];
let m = ["hi", , "world", 3.14];
[3, "hi", 17, [3, 4]].length == 4

Computer Science and Engineering The Ohio State University

Dynamic Size

 Arrays can grow
let n = ["tree", 6, -2];

n.length == 3 //=> true

n[8] = 17;

n.length == 9 //=> true

 Arrays can shrink
n.length = 2;

// n is now ["tree", 6]

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

let n = [];

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

n

let n = [];

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

n

n[0] = 4;

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

40
n

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

40
n

n[3] = 3.14;

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

4

undefined

undefined

3.14

0

1

2

3

n

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

4

undefined

undefined

3.14

0

1

2

3

n

n[1] = "hi";

Computer Science and Engineering The Ohio State University

Arrays are Dynamic

4

"hi"

undefined

3.14

0

1

2

3

n

Computer Science and Engineering The Ohio State University

Accessors: Searching

 Find occurrence: indexOf/lastIndexOf
 Returns -1 if not found

indexOf(element[, startIndex])

lastIndexOf(element[, lastIndex])

 Optional parameter: start/end index
 Uses strict equality (===)

let i = n.indexOf(elt);

while (i != -1) {

report(i);

i = n.indexOf(elt, i + 1);

}

Computer Science and Engineering The Ohio State University

Accessors: Extracting

 None of the following change the array
 Return a new array/string with result

 Concatenate: concat
concat(a1, a2, …, aN)

let d = n.concat(n);

 Extract a sub-section: slice
slice(startIndex, endIndex)

k = n.slice(1, 3); // k is n[1], n[2]

 Combine into string: join
join(separator)

s = n.join(" "); // default is ","

Computer Science and Engineering The Ohio State University

Mutators: Growing/Shrinking

 Add/remove from end: push/pop
let n = [10, 20];

newLength = n.push(30, 40); //=> 4

lastValue = n.pop(); //=> 40

 Add/remove from beginning:
unshift/shift
let n = [10, 20];

newLength = n.unshift(30, 40); //=> 4

firstValue = n.shift(); //=> 30

 Push/shift gives FIFO queue

Computer Science and Engineering The Ohio State University

Push Example

function findAll(n, elt) {

let indices = [];

let i = n.indexOf(elt);

while (i != -1) {

indices.push(i);

i = n.indexOf(elt, i + 1);

}

return indices;

}

Computer Science and Engineering The Ohio State University

Mutators: Delete/Insert/Replace

 Delete/insert/replace sub-array: splice
splice (index, howMany[, e1, e2, …, eN])
 Modifies array (cf. slice, an accessor)
 Returns array of removed elements
let magic = [34, -17, 6, 4];
let removed = magic.splice(2, 0, 13);
// removed is []
// magic is [34, -17, 13, 6, 4]

removed = magic.splice(3, 1, "hi", "yo");
// removed is [6]
// magic is [34, -17, 13, "hi", "yo", 4]

Computer Science and Engineering The Ohio State University

Mutators: Rearrange

 Transpose all elements: reverse
let n = [5, 300, 90];

n.reverse(); // n is [90, 300, 5]

 Order all elements: sort
let f = ["blue", "beluga","killer"];

f.sort(); // f is

// ["beluga", "blue", "killer"]

n.sort(); // n is [300, 5, 90]

Computer Science and Engineering The Ohio State University

Mutators: Rearrange

 Transpose all elements: reverse
let n = [5, 300, 90];

n.reverse(); // n is [90, 300, 5]

 Order all elements: sort
let f = ["blue", "beluga", "killer"];

f.sort(); // f is

// ["beluga", "blue", "killer"]

n.sort(); // n is [300, 5, 90]

 Problem: Default ordering is based on
string representation (lexicographic)

 Solution: Use a function that compares

Computer Science and Engineering The Ohio State University

Sorting with Comparator

 A comparator (a, b) returns a number
 < 0 iff a is smaller than b
 == 0 iff a is same size as b
 > 0 iff a is greater than b

 Examples
function lenOrder(a, b) {
return a.length – b.length;

}
function compareNumbers(a, b) {
return a – b;

}

Computer Science and Engineering The Ohio State University

Sorting with Comparator

 Optional argument to sort
sort([compareFunction])

 Example
names.sort(lenOrder);

n.sort(compareNumbers);

n.sort(function(a, b) {

return a - b;

});

Computer Science and Engineering The Ohio State University

Iteration: Logical Quantification

function isBig(elt, index, array) {

return (elt >= 10);

}

 Universal quantification: every
[5, 8, 13, 44].every(isBig); // false

[51, 18, 13, 44].every(isBig); // true

 Existential quantification: some
[5, 8, 13, 44].some(isBig); // true

[5, 8, 1, 4].some(isBig); // false

 Neither modifies original array

Computer Science and Engineering The Ohio State University

Iteration: Filter

 Pare down an array based on a
condition: filter

filter(predicate)

predicate(element, index, array)

 Returns a new array, with elements
that satisfied the predicate
 Does not modify the original array

 Example
t = [12, 5, 8, 13, 44].filter(isBig);

Computer Science and Engineering The Ohio State University

Iteration: Map

 Transform an array into a new array,
element by element: map
 E.g. an array of strings into an array of

their lengths
 ["hi", "there", "world"] [2, 5, 5]

map(callback)

callback(element, index, array)

 Example
len = names.map(function(elt, i, a) {

return elt.length

});

Computer Science and Engineering The Ohio State University

Recall: Ruby Map

 Transform an array into a new array,
element by element

 Uses block to calculate each new value
a.map { |item| block }

a

resulting
array

item

block

Computer Science and Engineering The Ohio State University

Iteration: For Each

 Similar to map, but preferred for side-
effects and changing an array in place

forEach(callback)

callback(element, index, array)

 Example
function logArrayElts(elt, i, array) {

console.log("[" + i + "] = " + elt);

}

[2, 5, 9].forEach(logArrayElts);

Computer Science and Engineering The Ohio State University

Iteration: Reduce

 Applies a binary operator between all the
elements of the array
 E.g., to sum the elements of an array
 [15, 10, 8] 0 + 15 + 10 + 8 33

reduce(callback[, initialValue])
callback(previous, elt, index, array)

 Examples
function sum(a, b) { return a + b; }
function acc(a, b) { return a + 2 * b; }
[2, 3, 7, 1].reduce(sum) //=> ?
[2, 3, 7, 1].reduce(sum, 0) //=> ?
[2, 3, "7", 1].reduce(sum) //=> ?
[2, 3, 7, 1].reduce(acc) //=> ?
[2, 3, 7, 1].reduce(acc, 0) //=> ?

Computer Science and Engineering The Ohio State University

Recall: Ruby’s Reduction Chain

a

resulting
value

item

block

acc

init

Computer Science and Engineering The Ohio State University

Iteration: Reduce

 Examples with anonymous functions
[2, 3].reduce(function(a, b) {

return a + b;

}); //#=> ?

[[0, 1], [2, 3], [4, 5]].reduce(
function(a, b) {

return a.concat(b);

}); //#=> ?

Computer Science and Engineering The Ohio State University

Your Turn

Given: roster of students (an array)

Write a JavaScript program that outputs
an html list of students (name and
midterm score) whose gpa is > 3.0, such
that the list is sorted by midterm score

1. Xi Chen (85)
2. Mary Smith (80)
3. Alessandro Reis (74)

Computer Science and Engineering The Ohio State University

Example Input
let roster =
[{ name: "Mary Smith",

gpa: 3.7,
midterm: 80 },

{ name: "Xi Chen",
gpa: 3.5,
midterm: 85 },

{ name: "Alessandro Reis",
gpa: 3.2,
midterm: 74 },

{ name: "Erin Senda",
gpa: 3.0,
midterm: 68 }];

Computer Science and Engineering The Ohio State University

Summary

 Array accessors and mutators
 Accessors: indexOf, slice
 Mutators for extraction: push/pop,

unshift/shift, splice
 Mutators for rearranging: reverse, sort

 Array iteration
 Quantification: every, some, filter
 Map (foreach for side-effects & mutating)
 Reduce

