
Computer Science and Engineering  College of Engineering  The Ohio State University

JavaScript:
Introduction, Types

Lecture 22

Computer Science and Engineering  The Ohio State University

History

Developed by Netscape
 “LiveScript”, then renamed JavaScript
 Nothing to do with Java!

 Interpreted
Browser-based, client-side execution
Standardized by ECMA (“ECMAScript”)
 MIME type text/javascript
 cf., JScript (MS)

Also popular outside of browsers
 e.g. Node.js

Translation target for other languages:
 Syntax: CoffeeScript
 Static types: Dart (Google), TypeScript (MS)

Computer Science and Engineering  The Ohio State University

Client-Side Execution

Request

GET /news/index.php HTTP/1.1
Host: www.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

<!DOCTYPE html>
<html lang="en">
<head><title>My Page</title>
<meta charset="utf-8" />
…

Computer Science and Engineering  The Ohio State University

Client-Side Execution
<!DOCTYPE html>

<html lang="en">

<head>

<title>Something Short and Sweet</title>

<meta charset="utf-8" />

</head>

<body>

<p>

Hello World!

</p>

</body>

</html>

Computer Science and Engineering  The Ohio State University

Client-Side Execution
<!DOCTYPE html>

<html lang="en">

<head>

<title>Something Short and Sweet</title>

<meta charset="utf-8" />

<script>

window.alert("Annoying!");

</script>

</head>

<body>

<p>

Hello World!

</p>

</body>

</html>

Computer Science and Engineering  The Ohio State University

Including Scripts

 Head: executed before body displays
 Script (source) can be explicitly included

<script type="text/javascript">
// default script type in HTML 5

console.info("hi");
...

</script>
 Script can be linked in from external file

<script src="MyProgram.js"></script>
 Recall: linking to CSS

 Inline: executed as body is displayed
 Browser blocks while downloading
 Common advice: put scripts at end of body
 Modern advice: use <script src="…" async>

Computer Science and Engineering  The Ohio State University

Async/defer Downloading

async

defer

Computer Science and Engineering  The Ohio State University

Demo

 Simple “hello world”
 HTML file containing JavaScript
 Body is empty, script writes HTML output
 Browser displays result

 Examining result
 View source: see JavaScript program
 Inspector tab: see rendered HTML

Computer Science and Engineering  The Ohio State University

Some Objects Provided Implicitly

 Some objects are created implicitly by
the execution environment (browser)

 Document object (document)
 document.writeln() puts output in body

 Window object (window)
 Refers to browser's display window
 Alert method pops up a dialogue

window.alert("Say \"cheese\"!");

 Prompt method pops up a dialogue
name = window.prompt("Enter name");

Computer Science and Engineering  The Ohio State University

Demo with Popups

 See: codepen.io/cse3901/pen/BYqqPb
 Alert window
 Prompt window
 Console output (info, warn, error)

 See example on class meetings page

Computer Science and Engineering  The Ohio State University

Familiar (Java) Minor Syntax

 Statement separator ;
 Wrinkle: ;'s are optional!
 Implicitly automatically inserted
 But clearer and safer to include explicitly

 Statement blocks {…}
 Parentheses in expressions (…)
 Comments // and /*…*/

Computer Science and Engineering  The Ohio State University

Familiar (Java) Operators

 Arithmetic (numbers are floats)
 + - * / %
 Wrinkles:
 No diff in / between ints and floats!
 % works on floats!

 Relational
 < > <= >=
 == !=
 Wrinkle: === !==

 Logical
 && || !

Computer Science and Engineering  The Ohio State University

Familiar (Java) Statements

 Assignment
 =
 += -= *= /= %=
 ++ -- (pre and post)

 Conditionals
 if (…), if (…) … else
 switch (c)

case 'a': … case 'b': … default;

 Iteration
 while (…), do…while(…)
 for (…;…;…)
 break, continue

Computer Science and Engineering  The Ohio State University

Primitive vs Reference Types

 Distinction is similar to Java
 A variable is a “slot” in memory
 A variable can be primitive
 The slot holds the value itself
 Boolean, number, string, (null, undefined)
 Since ECMAScript 2015 (ES6): symbols

 A variable can be a reference
 The slot holds a pointer to the value
 Arrays and objects (including functions!)

Computer Science and Engineering  The Ohio State University

Primitive vs Reference Types

34.2 "hi"

a b c d

4

0

-300

3.14

width: 12
height: 15
color: "blue"

Computer Science and Engineering  The Ohio State University

Primitives: Checking Equality

var a = 5;
var b = 5;
var c = 7;

if (a == b)… //=> true, equal slots
if (a == c)… //=> false

var x = "hello";
var y = "hello";

if (x == y)… //=> true! cf. Java

Computer Science and Engineering  The Ohio State University

Primitives: Assignment is Copy

var a = 5;
var b = a; // copy contents of slot

b++;

if (a == 5)… //=> true, a unchanged

Computer Science and Engineering  The Ohio State University

Assignment is Copy (of Slot)

var a = 5;
var b = a;

b++;

if (a == 5)…

5

a

5 5

a b

5 6

a b

Computer Science and Engineering  The Ohio State University

Primitives: Argument Passing

function inc (param) {

param++;

}

var a = 5;

inc(a); // copy contents of slot

if (a == 5)… //=> true

Computer Science and Engineering  The Ohio State University

References: Equality/Assignment

var a = {x:1, y:4}; // a new object

var b = {x:1, y:4}; // a new object

if (a == b)… //=> false

a = b; // copy contents of slot

if (a == b)… //=> true

Computer Science and Engineering  The Ohio State University

Assignment is Copy (of Slot)

a b

x: 1
y: 4

a b

x: 1
y: 4

x: 1
y: 4

a = b;

x: 1
y: 4

a != b a == b

Computer Science and Engineering  The Ohio State University

References: Argument Passing

function inc (param) {

param.x++;

}

var a = {x: 1, y: 4};

inc(a); // copy contents of slot

if (a.x == 2)… //=> true

Computer Science and Engineering  The Ohio State University

References: Argument Passing

function inc (param) {

param = {x: 2, y: 7};

}

var a = {x: 1, y: 4};

inc(a); // copy contents of slot

if (a.x == 2) //=> false

Computer Science and Engineering  The Ohio State University

Wrinkle: == vs ===

 Recall + operator in Java
 Concatenation between strings
 Addition between numbers
 3 + "4" also works! Results in "34"

 Similarly, JavaScript == (!=) tries to
make types match
 3 == "3" is true!

 To prevent implicit type conversion,
use === (!==)
 3 === "3" is false

 More on type conversion later…

Computer Science and Engineering  The Ohio State University

Demo: Iteration

 See: codepen.io/cse3901/pen/Jpmejp
 Table generated by Javascript
 Prompt for initial value
 Calculate interest series
 Print out a row of table for each year

Computer Science and Engineering  The Ohio State University

Static vs Dynamic Types

 Static: known at compile time
 e.g., C, C++, Java, Ada

int x
char[] a
FluffyCloud t
void* d

 Dynamic: known only at run time
 e.g., Python, PHP, Ruby, JavaScript

let x
let a
let t
let d

Computer Science and Engineering  The Ohio State University

Static Types

34.2 "hi"

a b c d

4

0

-300

3.14

width: 12
height: 15
color: "blue"

number string num[] Shape

Computer Science and Engineering  The Ohio State University

Dynamic Types

34.2 "hi"

a b c d

4

0

-300

3.14

width: 12
height: 15
color: "blue"

let let let let

[]

Object

Computer Science and Engineering  The Ohio State University

Function Signatures

 Statically typed
String parse(char[] s, int i) {… return e;}
out = parse(t, x);

 Parameter types (i.e. s and i) are declared
 Return type (i.e. of parse) is declared
 The compiler checks conformance of

 (Declared) types of arguments (t, x)
 (Declared) type of return expression (e)
 (Declared) type of expression using parse (out)

 Dynamically typed
function parse(s, i) { … }
out = parse(t, x)

 You are on your own!

Computer Science and Engineering  The Ohio State University

Static Types Dynamic Types

Changing Types at Run-time

//a is undefined

String a;

//a is null string

a = "hi;

//compile-time err

a = "hi";

a = 3;

//compile-time err

a.push();

//compile-time err

//a is undeclared

let a;

//a is undefined

a = "hi;

//load-time error

a = "hi";

a = 3;

//a is a number

a.push();

//run-time error

Computer Science and Engineering  The Ohio State University

Resources

 MDN (Mozilla Developer Network)
 developer.mozilla.org/docs/JavaScript

 jsfiddle.net, codepen.io
 HTML, CSS, Javascript  result

 REPL
 At console in VM
$ nodejs
>
 In a browser: repl.it/languages/javascript

 See class web site (under Resources)
 Style guides (Airbnb, Google)
 Books available online

 Eloquent Javascript, by Haverbeke
 JavaScript: The Good Parts, by Crockford

Computer Science and Engineering  The Ohio State University

Summary

 Executes at client-side, in browser
 Interpreted (not compiled)

 Basic syntax: operators, statements
 Objects: document, window…
 Types
 Primitives: boolean, number, string, null,

undefined
 References: arrays, objects (& functions)

 Working with primitives and references
 Checking equality
 Assignment
 Parameter passing

 Dynamic types (vs static types)

