Testing Frameworks

(MiniTest: Assert & Spec)

Computer Sci

Lecture 21

MiniTest and RSpec

Computer Science Engineering

Many popular testing libraries for Ruby

MiniTest (replaces older Test::Unit)

B Comes built-in

B Looks like JUnit (mapped to Ruby syntax)
B Well-named!

RSpec

B Installed as a library (i.e. a gem)

B Looks different from JUnit (and even Ruby!)
B Most unfortunate name!

RSpec view is that test cases define
expected behavior—they are the spec!
B What is wrong with that view?

Writing MiniTest Test

Computer Science and Engineering B The Ohio State University

Require runner and UUT

require 'minitest/autorun' # the test runner

require 'card' # the UUT

Test fixture: subclass of MiniTest: : Test
class TestCard < MiniTest: :Test

Test case: a method in the fixture

B Method name must begin with test
def test identifies set .. end

B Contains assertion(s) exercising a single piece
of code / behavior / functionality

B Should be small (i.e. test one thing)
B Should be independent (i.e. of other tests)

Test Suite: a collection of fixtures

Example: test_card.rb

Computer Science and Engineering B The Ohio State University

require 'minitest/autorun'’
require 'card' # assume card.rb on load path

class TestCard < MiniTest: :Test

def test has number

Card.new, :number
end

def test remembers number
@card = Card.new 1, "oval", "open", "red"

1, @card.number
end

end

Execution Model

Computer Science and Engineering B The Ohio State University

TestCard
Q‘"’Q

Gcard (&

‘ has number () -
L remembers () - has number () -
J

q& remembers () -J

Execution Model: Implications

Computer Science and Engineering B The Ohio State University

0 Separate instances of test class created
B One instance / test case

0 Test cases don't have side effects
B Passing/failing one test does not affect others

O Can not rely on order of tests
B Randomized order of execution
B Controllable with --seed command-line option
B Also controllable by invoking, in test fixture:
i suck and my tests are order dependent!
O Fixture: common set-up to all test cases
B Field(s) for instance(s) of class being tested

B Factor initialization code into its own method
B This method must be called setup

Good Practice: setup

Computer Science and Engineering B The Ohio State University

Initialize a fixture with a setup method
(rather than initialize method)

Reasons:

B If the code being tested throws an
exception during the setup, the output is
much more meaningful

B Symmetry with teardown method for
cleaning up after a test case

Example: test_card.rb

Computer Science and Engineering B The Ohio State University

require 'minitest/autorun'
require 'card' # assume card.rb is on load path

class TestCard < Minitest: :Test

def setup
@card = Card.new 1, "oval", "open", "red"
end

def test has number
assert respond to (card, :number
end

def test remembers number
assert equal 1, (@card.number
end
end

Execution Model

Computer Science and Engineering B The Ohio State University

TestCard
Q‘"’Q

Gcard (& =

setup () [N @card [(&F

has number () - ‘ setup () -
() - has number () -

o CZ) 0 -J

remembers

remembers

.

MiniTest Assertion Methods

Computer Science and Engineering B The Ohio State University

Most have two versions: assert & refute
B Example: assert nil, refute nil
B No need for negation (use refute instead)

Most take an optional message

assert empty Library.new,

"A new library contains no books"

B Message appears when assertion fails

Specials:
B pass/flunk - always passes/fails
B skip — skips the rest of the test case

Performance benchmarking also available

Asserting Equality

Computer Science and Engineering B The Ohio State University

Assert two objects are == equal

assert equal expected, actual
B Compares object values (i.e. == in Ruby)

B Failure produces useful output
TestCardfitest total number of cards
Expected: 81
Actual: 27

B Compare with assert exp == actual
TestCard#test_shuffle_is_permutation

Failed assertion, no message given

Assert two objects are aliased

assert same (@table.north, (@players.first
B Compares reference values (i.e. .equal?)

Good Practice: Comparing Floats

Never compare floating point numbers
directly for equality
assert equal 1.456, calculated,
"Low-density experiment"

B Numeric instabilities make exact equality
problematic for floats

Better: Equality with tolerance
assert in delta Math::PI, (22.0 / 7.0),
0.01, "Archimedes algorithm"
assert in epsilon Math::PI, (22.0 / 7.0),
0.1, "Archimedes algorithm"

B Delta for absolute error, epsilon for relative
error

Computer Science and Engineering B The Ohio State Universi

Common Assertions

Computer Science and Engineering B The Ohio State University

Boolean condition: assert (refute)
assert @books.all {|b| b.available?}

Is nil: assert nil (refute nil)
B Checks the result of #nil?

refute nil @library.manager

ie refute (@library.manager.nil?

Is empty: assert empty (refute emp)
B Checks the result of #empty?

assert empty Library.new

ie assert Library.new.empty?

More Assertions

String matches a regular expression

assert match /CSE.*/, @course.name

Collection includes a particular item

assert includes (@library, @book

Object is of a particular type

assert instance of String, @book.title

Object has a method

assert respond to @student, :alarm

Block raises an exception

assert_raises ZeroDivisionError do

@library.average book cost
end

Computer Science and Engineering B The Ohio State Universi

Good Practice: Organization

Computer Science a

Keep tests in the same project as the
code

B They are part of the build, the repo, etc.
B Helps to keep tests current

Separate tests and implementation
B /set/lib — contains card.rb (implementation)
B /set/tests — contains test_card.rb (tests)

Name test classes consistently
B TestCard tests Card

Test fixture is a Ruby program
[setapp] $ ruby tests/test card.rb

B Test needs to be able to find UUT (require)

B Add location of UUT to load path
[setapp] $ ruby -I lib tests/test card.rb

Alternative Syntax:

Computer Science and Engineering B The Ohio State University

Problem: Cumbersome method names

test shuffle changes deck configuration

Solution: exploit Ruby language
flexibility in API of testing library

B Methods are available that change the
syntax and structure of test cases

B Domain-specific language (DSL) for tests

Result: MiniTest::Spec
B Notation inspired by RSpec

Writing MiniTest::Spec Tests

Computer Science and Engineering B The Ohio State University

O Require runner and UUT as usual

O 'glestkfixture ("example group”) is a describe
0C

describe Card "noun being described" do .. end
B Can be nested, and identified by string
B The block contains examples

O Test case (“example”) is an it block

it "identifies a set" .. end

B Contains expectation(s) on a single piece of code
/ behavior / functionality

O Expectations are methods on values of
objects
value (@card.number) .must equal 1

expect (Rcard.number) .must equal 1 # equivalent
_ (RGcard.number) .must equal 1 # equivalent

Example: test_card.rb

Computer Science and Engineering B The Ohio State University

require 'minitest/autorun'’
require 'card' # assume card.rb is on load path

describe Card, '"game of set" do

it "has a number" do
(Card.new) . :number

end

it "remembers its original number" do
@card = Card.new 1, "oval", "open", "red"
(Rcard.number) . 1
end
end

Expectations vs. Assertlons

B The Ohio State University

Similarity: Positive and negatlve form
must be empty # like assert empty
wont be empty # like refute empty

Difference: Argument order

assert equal expected, actual
_actual .must equal expected

Difference: No string argument

B Meaningful output comes from group
name and example name
Card: :game of set#ftest 0001 has a number
[test card.rb:14]:
Expected #<Card:0x00564£9a00> (Card) to
respond to #number.

_(object).must +

Computer Science and Engineering B The Ohio State University

O General expectation: Must be
_x.must be :<=, 10

O Many other flavors of expectation...
_x.must equal y
_x.must be same as y
(@llbrary manager) .must be nil
_@shelf must be empty
_@library.must include (@book
_PI.must be within delta (22.0 / 7.0), .01
__(@Gbook.title) .must be instance of String
__(@Gcourse.name) .must match /CSE.*/
_@student.must respond to :alarm
proc {
@library.average book cost
} .must raise ZeroDivisionError

Setup/Teardown

Methods before, after
describe Student do
before do
@buck id = BuckID.new "4328429"
@s = Student.new buck id

end

it 'should come to class' do .. end

end

Independence is good, but

Computer Science and Engineering B The Ohio State Universi

Let: Lazy Initialization

Computer Science and Engineering B The Ohio State University

describe Student do
both defines a method (student)
and memoizes its return value!
let (:student) { Student.new 1234 }

describe '"sleep deprivation" do
it "misses class" do
__(student.awake?) .must equal false
end
end
end

RSpec: Set up and Us

Computer Science and Engineering B The Ohio State University

Install the rspec gem locally
[~] $ gem install rspec

Set up your program to use rspec
[myapp] $ rspec —-init

Init creates several things in myapp/
spec/ # put tests (foo spec.rb) here

spec/spec_helper.rb # configures paths

.rspec # default command-line args

Run tests
[myapp] $ rspec spec/foo spec.rb

Example Groups and Examples

Computer Science and Engineering B The Ohio State University

require relative '../student'’

describe Student do # example group
it "can drop a class" do # example
end

context '"when attending lecture" do
:each do .. end
it "stays awake during lecture" do

end
it "stores info until exam" do

end
end
end

RSpec Expectations

Computer Science and Engineering B The Ohio State University

Verb is “should” (or “should_not")
target.should condition # notice space

Examples of condition

B ==, equal,
factor.should equal 34

B be true, be_false, be_nil, be_empty
list.emtpy?.should be true

B have(n).items, have_at_most(n).items

B include(item)
list.should include (name)

B match(regex)
B respond_to(method_name)

Preferred form: expect().to (or not_to)
expect (a_result) .to eq "OSU"

Computer Science and Engineering B The Ohio State University

O Top-down: testing a class that uses A, B, C

O Problem: We don't have A, B, C
B Want quick approximations of A, B, C
B Behave in certain way, returning canned answers

O Solution: Stub method

B Takes a hash of method names & return values

B Returns an object with those methods
stub printer = stub :available? => true,

‘render => nil

O Another form adds (or changes) a
method/return value of an existing object

long str = 'something'
long str.stub (:length).and return(1000000)

Computer Science and Engineering B The Ohio State University

Stubs passively allow the test to go
through

Mocks monitor how they are used (and
will fail if they aren't used right)
it 'should know how to print itself' do
= mock ('Printer')
mock printer.should receive
(:available?) .and return(true)
mock printer.should receive
(:render) .exactly (3) . times
@doc.print () .should
== 'Done'
end

Summary

MiniTest

B Test fixture: class extending Minitest::Test
B Test case: method named test__

Execution model: multiple instances
B Independence of test cases
MiniTest::Spec

B Examples and expectations

B String descriptions

RSpec

B Stubs and mocks

