
Computer Science and Engineering  College of Engineering  The Ohio State University

Testing Frameworks
(MiniTest: Assert & Spec)

Lecture 21

Computer Science and Engineering  The Ohio State University

MiniTest and RSpec

 Many popular testing libraries for Ruby
 MiniTest (replaces older Test::Unit)
 Comes built-in
 Looks like JUnit (mapped to Ruby syntax)
 Well-named!

 RSpec
 Installed as a library (i.e. a gem)
 Looks different from JUnit (and even Ruby!)
 Most unfortunate name!

 RSpec view is that test cases define
expected behavior—they are the spec!
 What is wrong with that view?

Computer Science and Engineering  The Ohio State University

Writing MiniTest Tests

 Require runner and UUT
require 'minitest/autorun' # the test runner
require 'card' # the UUT

 Test fixture: subclass of MiniTest::Test
class TestCard < MiniTest::Test

 Test case: a method in the fixture
 Method name must begin with test_

def test_identifies_set … end

 Contains assertion(s) exercising a single piece
of code / behavior / functionality

 Should be small (i.e. test one thing)
 Should be independent (i.e. of other tests)

 Test Suite: a collection of fixtures

Computer Science and Engineering  The Ohio State University

Example: test_card.rb
require 'minitest/autorun'
require 'card' # assume card.rb on load path

class TestCard < MiniTest::Test

def test_has_number
assert_respond_to Card.new, :number

end

def test_remembers_number
@card = Card.new 1, "oval", "open", "red"
assert_equal 1, @card.number

end
end

Computer Science and Engineering  The Ohio State University

Execution Model

has_number()

remembers()

TestCard

has_number()

remembers()

@card

instance of
instance of

Computer Science and Engineering  The Ohio State University

Execution Model: Implications

 Separate instances of test class created
 One instance / test case

 Test cases don't have side effects
 Passing/failing one test does not affect others

 Can not rely on order of tests
 Randomized order of execution
 Controllable with --seed command-line option
 Also controllable by invoking, in test fixture:

i_suck_and_my_tests_are_order_dependent!

 Fixture: common set-up to all test cases
 Field(s) for instance(s) of class being tested
 Factor initialization code into its own method
 This method must be called setup

Computer Science and Engineering  The Ohio State University

Good Practice: setup

 Initialize a fixture with a setup method
(rather than initialize method)

 Reasons:
 If the code being tested throws an

exception during the setup, the output is
much more meaningful

 Symmetry with teardown method for
cleaning up after a test case

Computer Science and Engineering  The Ohio State University

Example: test_card.rb
require 'minitest/autorun'
require 'card' # assume card.rb is on load path

class TestCard < Minitest::Test

def setup
@card = Card.new 1, "oval", "open", "red"

end

def test_has_number
assert_respond_to @card, :number

end

def test_remembers_number
assert_equal 1, @card.number

end
end

Computer Science and Engineering  The Ohio State University

Execution Model

has_number()

remembers()

@card

2

2

setup()

1

1

TestCard

has_number()

remembers()

@card

setup()

instance of
instance of

Computer Science and Engineering  The Ohio State University

MiniTest Assertion Methods

 Most have two versions: assert & refute
 Example: assert_nil, refute_nil
 No need for negation (use refute instead)

 Most take an optional message
assert_empty Library.new,

"A new library contains no books"

 Message appears when assertion fails

 Specials:
 pass/flunk – always passes/fails
 skip – skips the rest of the test case

 Performance benchmarking also available

Computer Science and Engineering  The Ohio State University

Asserting Equality

 Assert two objects are == equal
assert_equal expected, actual

 Compares object values (i.e. == in Ruby)
 Failure produces useful output

TestCard#test_total_number_of_cards
Expected: 81
Actual: 27

 Compare with assert exp == actual
TestCard#test_shuffle_is_permutation
Failed assertion, no message given

 Assert two objects are aliased
assert_same @table.north, @players.first

 Compares reference values (i.e. .equal?)

Computer Science and Engineering  The Ohio State University

Good Practice: Comparing Floats

 Never compare floating point numbers
directly for equality

assert_equal 1.456, calculated,
"Low-density experiment"

 Numeric instabilities make exact equality
problematic for floats

 Better: Equality with tolerance
assert_in_delta Math::PI, (22.0 / 7.0),

0.01, "Archimedes algorithm"
assert_in_epsilon Math::PI, (22.0 / 7.0),

0.1, "Archimedes algorithm"

 Delta for absolute error, epsilon for relative
error

Computer Science and Engineering  The Ohio State University

Common Assertions

 Boolean condition: assert (refute)
assert @books.all {|b| b.available?}

 Is nil: assert_nil (refute _nil)
 Checks the result of #nil?

refute_nil @library.manager

ie refute @library.manager.nil?

 Is empty: assert_empty (refute_emp)
 Checks the result of #empty?

assert_empty Library.new

ie assert Library.new.empty?

Computer Science and Engineering  The Ohio State University

More Assertions

 String matches a regular expression
assert_match /CSE.*/, @course.name

 Collection includes a particular item
assert_includes @library, @book

 Object is of a particular type
assert_instance_of String, @book.title

 Object has a method
assert_respond_to @student, :alarm

 Block raises an exception
assert_raises ZeroDivisionError do
@library.average_book_cost

end

Computer Science and Engineering  The Ohio State University

Good Practice: Organization

 Keep tests in the same project as the
code
 They are part of the build, the repo, etc.
 Helps to keep tests current

 Separate tests and implementation
 /set/lib – contains card.rb (implementation)
 /set/tests – contains test_card.rb (tests)

 Name test classes consistently
 TestCard tests Card

 Test fixture is a Ruby program
[setapp] $ ruby tests/test_card.rb

 Test needs to be able to find UUT (require)
 Add location of UUT to load path

[setapp] $ ruby –I lib tests/test_card.rb

Computer Science and Engineering  The Ohio State University

Alternative Syntax:

 Problem: Cumbersome method names
test_shuffle_changes_deck_configuration

 Solution: exploit Ruby language
flexibility in API of testing library
 Methods are available that change the

syntax and structure of test cases
 Domain-specific language (DSL) for tests

 Result: MiniTest::Spec
 Notation inspired by RSpec

Computer Science and Engineering  The Ohio State University

Writing MiniTest::Spec Tests

 Require runner and UUT as usual
 Test fixture (“example group”) is a describe

block
describe Card "noun being described" do … end

 Can be nested, and identified by string
 The block contains examples

 Test case (“example”) is an it block
it "identifies a set" … end

 Contains expectation(s) on a single piece of code
/ behavior / functionality

 Expectations are methods on values of
objects

value(@card.number).must_equal 1
expect(@card.number).must_equal 1 # equivalent
_(@card.number).must_equal 1 # equivalent

Computer Science and Engineering  The Ohio State University

Example: test_card.rb
require 'minitest/autorun'
require 'card' # assume card.rb is on load path

describe Card, "game of set" do

it "has a number" do
_(Card.new).must_respond_to :number
value(Card.new).must_respond_to :number
expect(Card.new).must_respond_to :number

end

it "remembers its original number" do
@card = Card.new 1, "oval", "open", "red"
_(@card.number).must_equal 1

end
end

Computer Science and Engineering  The Ohio State University

Expectations vs. Assertions

 Similarity: Positive and negative form
must_be_empty # like assert_empty
wont_be_empty # like refute_empty

 Difference: Argument order
assert_equal expected, actual
_actual.must_equal expected

 Difference: No string argument
 Meaningful output comes from group

name and example name
Card::game of set#test_0001_has a number
[test_card.rb:14]:
Expected #<Card:0x00564f9a00> (Card) to
respond to #number.

Computer Science and Engineering  The Ohio State University

(object).must + …

 General expectation: Must be
_x.must_be :<=, 10

 Many other flavors of expectation…
_x.must_equal y
_x.must_be_same_as y
_(@library.manager).must_be_nil
_@shelf.must_be_empty
_@library.must_include @book
_PI.must_be_within_delta (22.0 / 7.0), .01
_(@book.title).must_be_instance_of String
_(@course.name).must_match /CSE.*/
_@student.must_respond_to :alarm
proc {

@library.average_book_cost
}.must_raise ZeroDivisionError

Computer Science and Engineering  The Ohio State University

Setup/Teardown

 Methods before, after
describe Student do

before do

@buck_id = BuckID.new "4328429"

@s = Student.new buck_id

end

it 'should come to class' do … end

end

 Independence is good, but

Computer Science and Engineering  The Ohio State University

Let: Lazy Initialization

describe Student do
both defines a method (student)
and memoizes its return value!
let(:student) { Student.new 1234 }

describe "sleep deprivation" do
it "misses class" do
_(student.awake?).must_equal false

end
end

end

Computer Science and Engineering  The Ohio State University

RSpec: Set up and Use

 Install the rspec gem locally
[~] $ gem install rspec

 Set up your program to use rspec
[myapp] $ rspec –-init

 Init creates several things in myapp/
spec/ # put tests (foo_spec.rb) here

spec/spec_helper.rb # configures paths

.rspec # default command-line args

 Run tests
[myapp] $ rspec spec/foo_spec.rb

Computer Science and Engineering  The Ohio State University

Example Groups and Examples
require_relative '../student'

describe Student do # example group
it "can drop a class" do # example

...
end
context "when attending lecture" do

before :each do … end
it "stays awake during lecture" do

...
end
it "stores info until exam" do

...
end

end
end

Computer Science and Engineering  The Ohio State University

RSpec Expectations

 Verb is “should” (or “should_not”)
target.should condition # notice space

 Examples of condition
 ==, equal,

factor.should equal 34
 be_true, be_false, be_nil, be_empty

list.emtpy?.should be_true
 have(n).items, have_at_most(n).items
 include(item)

list.should include(name)
 match(regex)
 respond_to(method_name)

 Preferred form: expect().to (or not_to)
expect(a_result).to eq "OSU"

Computer Science and Engineering  The Ohio State University

Stubs

 Top-down: testing a class that uses A, B, C
 Problem: We don't have A, B, C

 Want quick approximations of A, B, C
 Behave in certain way, returning canned answers

 Solution: Stub method
 Takes a hash of method names & return values
 Returns an object with those methods

stub_printer = stub :available? => true,
:render => nil

 Another form adds (or changes) a
method/return value of an existing object

long_str = 'something'
long_str.stub (:length).and_return(1000000)

Computer Science and Engineering  The Ohio State University

Mocks

 Stubs passively allow the test to go
through

 Mocks monitor how they are used (and
will fail if they aren't used right)
it 'should know how to print itself' do
mock_printer = mock('Printer')
mock_printer.should_receive

(:available?).and_return(true)
mock_printer.should_receive

(:render).exactly(3).times
@doc.print (mock_printer).should

== 'Done'
end

Computer Science and Engineering  The Ohio State University

Summary

 MiniTest
 Test fixture: class extending Minitest::Test
 Test case: method named test_

 Execution model: multiple instances
 Independence of test cases

 MiniTest::Spec
 Examples and expectations
 String descriptions

 RSpec
 Stubs and mocks

