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MiniTest and RSpec

Computer Science Engineering

Many popular testing libraries for Ruby

MiniTest (replaces older Test::Unit)

B Comes built-in

B Looks like JUnit (mapped to Ruby syntax)
B Well-named!

RSpec

B Installed as a library (i.e. a gem)

B Looks different from JUnit (and even Ruby!)
B Most unfortunate name!

RSpec view is that test cases define
expected behavior—they are the spec!
B What is wrong with that view?




Writing MiniTest Test
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Require runner and UUT

require 'minitest/autorun' # the test runner

require 'card' # the UUT

Test fixture: subclass of MiniTest: : Test
class TestCard < MiniTest: :Test

Test case: a method in the fixture

B Method name must begin with test
def test identifies set .. end

B Contains assertion(s) exercising a single piece
of code / behavior / functionality

B Should be small (i.e. test one thing)
B Should be independent (i.e. of other tests)

Test Suite: a collection of fixtures




Example: test_card.rb
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require 'minitest/autorun'’
require 'card' # assume card.rb on load path

class TestCard < MiniTest: :Test

def test has number

Card.new, :number
end

def test remembers number
@card = Card.new 1, "oval", "open", "red"

1, @card.number
end

end



Execution Model
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Execution Model: Implications
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0 Separate instances of test class created
B One instance / test case

0 Test cases don't have side effects
B Passing/failing one test does not affect others

O Can not rely on order of tests
B Randomized order of execution
B Controllable with --seed command-line option
B Also controllable by invoking, in test fixture:
i suck and my tests are order dependent!
O Fixture: common set-up to all test cases
B Field(s) for instance(s) of class being tested

B Factor initialization code into its own method
B This method must be called setup



Good Practice: setup
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Initialize a fixture with a setup method
(rather than initialize method)

Reasons:

B If the code being tested throws an
exception during the setup, the output is
much more meaningful

B Symmetry with teardown method for
cleaning up after a test case




Example: test_card.rb
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require 'minitest/autorun'
require 'card' # assume card.rb is on load path

class TestCard < Minitest: :Test

def setup
@card = Card.new 1, "oval", "open", "red"
end

def test has number
assert respond to (card, :number
end

def test remembers number
assert equal 1, (@card.number
end
end



Execution Model
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MiniTest Assertion Methods
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Most have two versions: assert & refute
B Example: assert nil, refute nil
B No need for negation (use refute instead)

Most take an optional message

assert empty Library.new,

"A new library contains no books"

B Message appears when assertion fails

Specials:
B pass/flunk - always passes/fails
B skip — skips the rest of the test case

Performance benchmarking also available




Asserting Equality
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Assert two objects are == equal

assert equal expected, actual
B Compares object values (i.e. == in Ruby)

B Failure produces useful output
TestCardfitest total number of cards
Expected: 81
Actual: 27

B Compare with assert exp == actual
TestCard#test_shuffle_is_permutation

Failed assertion, no message given

Assert two objects are aliased

assert same (@table.north, (@players.first
B Compares reference values (i.e. .equal?)




Good Practice: Comparing Floats

Never compare floating point numbers
directly for equality
assert equal 1.456, calculated,
"Low-density experiment"

B Numeric instabilities make exact equality
problematic for floats

Better: Equality with tolerance
assert in delta Math::PI, (22.0 / 7.0),
0.01, "Archimedes algorithm"
assert in epsilon Math::PI, (22.0 / 7.0),
0.1, "Archimedes algorithm"

B Delta for absolute error, epsilon for relative
error
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Common Assertions
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Boolean condition: assert (refute)
assert @books.all {|b| b.available?}

Is nil: assert nil (refute nil)
B Checks the result of #nil?

refute nil @library.manager

# ie refute (@library.manager.nil?

Is empty: assert empty (refute emp)
B Checks the result of #empty?

assert empty Library.new

# ie assert Library.new.empty?



More Assertions

String matches a regular expression

assert match /CSE.*/, @course.name

Collection includes a particular item

assert includes (@library, @book

Object is of a particular type

assert instance of String, @book.title

Object has a method

assert respond to @student, :alarm

Block raises an exception

assert_raises ZeroDivisionError do

@library.average book cost
end
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Good Practice: Organization
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Keep tests in the same project as the
code

B They are part of the build, the repo, etc.
B Helps to keep tests current

Separate tests and implementation
B /set/lib — contains card.rb (implementation)
B /set/tests — contains test_card.rb (tests)

Name test classes consistently
B TestCard tests Card

Test fixture is a Ruby program
[setapp] $ ruby tests/test card.rb

B Test needs to be able to find UUT (require)

B Add location of UUT to load path
[setapp] $ ruby -I lib tests/test card.rb




Alternative Syntax:
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Problem: Cumbersome method names

test shuffle changes deck configuration

Solution: exploit Ruby language
flexibility in API of testing library

B Methods are available that change the
syntax and structure of test cases

B Domain-specific language (DSL) for tests

Result: MiniTest::Spec
B Notation inspired by RSpec




Writing MiniTest::Spec Tests
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O Require runner and UUT as usual

O 'glestkfixture ("example group”) is a describe
0C

describe Card "noun being described" do .. end
B Can be nested, and identified by string
B The block contains examples

O Test case (“example”) is an it block

it "identifies a set" .. end

B Contains expectation(s) on a single piece of code
/ behavior / functionality

O Expectations are methods on values of
objects
value (@card.number) .must equal 1

expect (Rcard.number) .must equal 1 # equivalent
_ (RGcard.number) .must equal 1 # equivalent



Example: test_card.rb
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require 'minitest/autorun'’
require 'card' # assume card.rb is on load path

describe Card, '"game of set" do

it "has a number" do
(Card.new) . :number

end

it "remembers its original number" do
@card = Card.new 1, "oval", "open", "red"
(Rcard.number) . 1
end
end



Expectations vs. Assertlons
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Similarity: Positive and negatlve form
must be empty # like assert empty
wont be empty # like refute empty

Difference: Argument order

assert equal expected, actual
_actual .must equal expected

Difference: No string argument

B Meaningful output comes from group
name and example name
Card: :game of set#ftest 0001 has a number
[test card.rb:14]:
Expected #<Card:0x00564£9a00> (Card) to
respond to #number.




_(object).must  +

Computer Science and Engineering B The Ohio State University

O General expectation: Must be
_x.must be :<=, 10

O Many other flavors of expectation...
_x.must equal y
_x.must be same as y
(@llbrary manager) .must be nil
_@shelf must be empty
_@library.must include (@book
_PI.must be within delta (22.0 / 7.0), .01
__(@Gbook.title) .must be instance of String
__(@Gcourse.name) .must match /CSE.*/
_@student.must respond to :alarm
proc {
@library.average book cost
} .must raise ZeroDivisionError



Setup/Teardown

Methods before, after
describe Student do
before do
@buck id = BuckID.new "4328429"
@s = Student.new buck id

end

it 'should come to class' do .. end

end

Independence is good, but
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Let: Lazy Initialization
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describe Student do
# both defines a method (student)
# and memoizes its return value!
let (:student) { Student.new 1234 }

describe '"sleep deprivation" do
it "misses class" do
__(student.awake?) .must equal false
end
end
end



RSpec: Set up and Us
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Install the rspec gem locally
[~] $ gem install rspec

Set up your program to use rspec
[myapp] $ rspec —-init

Init creates several things in myapp/
spec/ # put tests (foo spec.rb) here

spec/spec_helper.rb # configures paths

.rspec # default command-line args

Run tests
[myapp] $ rspec spec/foo spec.rb




Example Groups and Examples
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require relative '../student'’

describe Student do # example group
it "can drop a class" do # example
end

context '"when attending lecture" do
:each do .. end
it "stays awake during lecture" do

end
it "stores info until exam" do

end
end
end



RSpec Expectations
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Verb is “should” (or “should_not")
target.should condition # notice space

Examples of condition

B ==, equal,
factor.should equal 34

B be true, be_false, be_nil, be_empty
list.emtpy?.should be true

B have(n).items, have_at_most(n).items

B include(item)
list.should include (name)

B match(regex)
B respond_to(method_name)

Preferred form: expect().to (or not_to)
expect (a_result) .to eq "OSU"
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O Top-down: testing a class that uses A, B, C

O Problem: We don't have A, B, C
B Want quick approximations of A, B, C
B Behave in certain way, returning canned answers

O Solution: Stub method

B Takes a hash of method names & return values

B Returns an object with those methods
stub printer = stub :available? => true,

‘render => nil

O Another form adds (or changes) a
method/return value of an existing object

long str = 'something'
long str.stub (:length).and return(1000000)
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Stubs passively allow the test to go
through

Mocks monitor how they are used (and
will fail if they aren't used right)
it 'should know how to print itself' do
= mock ('Printer')
mock printer.should receive
(:available?) .and return(true)
mock printer.should receive
(:render) .exactly (3) . times
@doc.print ( ) .should
== 'Done'
end




Summary

MiniTest

B Test fixture: class extending Minitest::Test
B Test case: method named test__

Execution model: multiple instances
B Independence of test cases
MiniTest::Spec

B Examples and expectations

B String descriptions

RSpec

B Stubs and mocks




