
1

Computer Science and Engineering   College of Engineering   The Ohio State University

HTTP:
Hypertext Transfer Protocol

Lecture 12

Computer Science and Engineering   The Ohio State University

HTTP

 Hypertext Transfer Protocol
 History
 Early 90's: developed at CERN, Tim Berners-Lee
 1996: version 1.0
 1999: version 1.1 (ubiquitous today!)
 May 2015: version 2

 Performance improvements: binary, server push…
 Backwards compatible
 Adoption:

https://w3techs.com/technologies/details/ce-http2/all/all

 Simple request/response (client/server)
 Client sends request to (web) server
 (Web) server responds
 “stateless” protocol



2

Computer Science and Engineering   The Ohio State University

Request/Response Anatomy

 An HTTP request/response consists of
1. Header: meta information
2. Body (sometimes): payload

 The header consists of
1. Method/Status (for request/response)
2. Header fields, separated by newlines
3. Blank line

Computer Science and Engineering   The Ohio State University

Protocol: Request, Response

Request

Response

Method
Header field 1
Header field 2

Body

Status
Header field 1
Header field 2
Header field 3

Body



3

Computer Science and Engineering   The Ohio State University

Request Header: First Line

 Syntax of first line: 
verb path version

 Verb: GET, HEAD, POST, PUT, DELETE,…

 Path: part of URL (path and query)
scheme://FQDN:port/path?query#fragment

 Version: HTTP/1.1, HTTP/2

 Example:
 For URL

http://news.osu.edu/news/

 First line of request is
GET /news/ HTTP/1.1

Computer Science and Engineering   The Ohio State University

Request Header: Header Fields

 Each field on its own line, syntax:
name: value

 Examples (only "Host" is required)
Host: cse.ohio-state.edu
Accept: text/*
Accept: image/gif
If-Modified-Since: Sat, 12 May 2016 
19:43:31 GMT
Content-Length: 349
User-Agent: Mozilla/5.0 (X11; Ubuntu; 
Linux x86_64; rv:51.0) Gecko/20100101 
Firefox/51.0

 Blank line indicates end of headers



4

Computer Science and Engineering   The Ohio State University

Header Fields cont’d

 Host
 Only required field
 Q: Why is host field even needed?

 Accept
 Browser preference for MIME type(s) to receive

 If-Modified-Since
 Send payload only if changed since date
 Date must be GMT

 Content-Length
 Required if request has a body
 Number of bytes in body

 User-Agent
 Identifies application making request

Computer Science and Engineering   The Ohio State University

Steiner, The New Yorker (1993)



5

Computer Science and Engineering   The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: news.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc 

Computer Science and Engineering   The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: news.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc 

$ curl -A "Mozilla/5.0" news.osu.edu

$ telnet



6

Computer Science and Engineering   The Ohio State University

Demo: HTTP Request with telnet

 Example URL
 web.cse.ohio-state.edu/~sivilotti.1/

 At console
$ telnet web.cse.ohio-state.edu 80

 Opens connection to port 80, where a web 
server is listening

 Send the following HTTP request:
GET /~sivilotti.1/ HTTP/1.1

Host: web.cse.ohio-state.edu

<blank line>

Computer Science and Engineering   The Ohio State University

HTTP Traffic Transparency

 Everything is visible to an eavesdropper
 HTTP headers are plain text
 HTTP payload may be binary

 To protect communication, use encryption
 SSL, TLS: protocols to create secure channel
 Initial handshake between client and server
 Subsequent communication is encrypted

 HTTP over secure channel = HTTPS
 Default port: 443

Request

MFKM5DO388HSshF1GfEr
x5PXsJk0hGVtiK8xoNf4



7

Computer Science and Engineering   The Ohio State University

Demo: HTTPS with openssl

 Use openssl instead of telnet
 Negotiates initial handshake with server
 Handles encryption/decryption of traffic

 Example URL
 https://www.osu.edu/

 At console
$ openssl s_client -connect www.osu.edu:443
 Note connection to port 443 (ie https)

 Syntax of subsequent request is the same
 Send the following HTTP request:

GET / HTTP/1.1
Host: www.osu.edu
<blank line>

Computer Science and Engineering   The Ohio State University

HTTP Response Anatomy

 Recall, four parts
1. Status (one line)
2. Header fields (separated by newlines)
3. Blank line
4. Body (ie payload)

 Parts 1-3 collectively called “the header”
 Part 1 (status line) syntax:

http-version status-code text
 Examples
HTTP/1.1 200 OK
HTTP/1.1 301 Moved Permanently
HTTP/1.1 404 Not Found



8

Computer Science and Engineering   The Ohio State University

Taxonomy of Status Codes
Code Meaning

1xx Informational

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error

Computer Science and Engineering   The Ohio State University

Some Common Status Codes
 200 OK

 All is good!
 Response body is the requested document

 301 Moved Permanently
 Requested resource is found somewhere else (please 

go there in the future)
 304 Not Modified

 Document hasn’t changed since date/time in If-
Modified-Since field of request

 No response body
 404 Not Found

 Server could not satisfy the request
 It is the client’s fault (design-by-contract?)

 500 Internal Server Error
 Server could not satisfy the request
 It is the server’s fault (design-by-contract?)



9

Computer Science and Engineering   The Ohio State University

Response Header: Header Fields

 Each field on its own line, syntax:
name: value

 Examples
Date: Mon, 16 Sep 2019 14:51:38 GMT

Server: Apache/2.4.6 (Red Hat)

Content-Type: text/html; charset=UTF-8

Content-Length: 333

 Blank line indicates end of headers

Computer Science and Engineering   The Ohio State University

Demo: Using Terminal

 Use telnet to retrieve
http://web.cse.ohio-state.edu/~paolo

 Fails (see status code)
http://web.cse.ohio-state.edu/~paolo/

 Body is incomplete (no images)
 Body is chunked

 Use curl to retrieve
 Handles https, headers, redirection, 

chunking,…
$ curl –L http://web.cse.ohio-sta…



10

Computer Science and Engineering   The Ohio State University

Demo: Using Firefox

 Developer > Network
 One GET results in many requests

http://www.cse.osu.edu/~paolo

 For each request, see:
 Request headers
 Response status code
 Response headers
 Response (and preview)

Computer Science and Engineering   The Ohio State University

Demo: Using Ruby

 Mechanize: A Ruby gem for HTTP
require 'mechanize'

 Create an agent to send requests
agent = Mechanize.new do |a|

a.user_agent_alias = "Mac Safari"
end

 Use agent to issue a request
page = agent.get "http://www.osu.edu"

 Follow links, submit forms, etc
page.link_with(text: "Carmen").click
s = page.form_with action: /search/



11

Computer Science and Engineering   The Ohio State University

Request Methods

 GET, HEAD
 Request: should be safe (no side effects)

 PUT
 Update (or create): should be idempotent

 DELETE
 Delete: should be idempotent

 POST
 Create (or update): changes server state
 Beware re-sending!

 HTTP does not enforce these semantics

Computer Science and Engineering   The Ohio State University

HTTP is Stateless

 Every request looks the same
 But maintaining state between requests is 

really useful:
 User logs in, then can GET account info
 Shopping cart “remembers” contents

 One solution: Keep a shared secret
 Server's response contains a unique session 

identifier (a long random value)
 Subsequent requests from this client include 

this secret value
 Server recognizes the secret value, request 

must have come from original client



12

Computer Science and Engineering   The Ohio State University

HTTP Session

Request

Response
Secret: 38afes7a8 

Request
id: 38afes7a8

Response

38afes7a8

Store secret

Check id

Request
id: 38afes7a8

Response

Check id

Computer Science and Engineering   The Ohio State University

HTTP Cookies

 Popular mechanism for session manag’nt
 Set in response header field

Set-Cookie: session=38afes7a8 
 Any name/value is ok
 Options: expiry, require https

 Client includes cookie(s) in subsequent 
requests to that domain

 Sent in request header field:
Cookie: session=38afes7a8 

 Cookies also used for
 Tracking/analytics: What path did they take?
 Personalization



13

Computer Science and Engineering   The Ohio State University

Passing arguments: GET

 Arguments are key-value pairs
Mascot: Brutus Buckeye
Dept: CS&E

 Can be encoded as part of URL
scheme://FQDN:port/path?query#fragment

 application/x-www-form-urlencoded
 Each key-value pair separated by & (or ;)
 Each key separated from value by =
 Replace spaces with + (arcane!)
 Then normal URL encoding
Mascot=Brutus+Buckeye&Dept=CS%26E

Computer Science and Engineering   The Ohio State University

Examples

 Wikipedia search
http://en.wikipedia.org/

w/index.php?
search=ada+lovelace

 OSU news articles
https://news.osu.edu/

?
q=Rhodes+Scholarship&search.x=1

 Random numbers (link)
https://random.org/

passwords/?
num=5&len=8&format=plain

 Demo: use FF Dev to edit/resubmit request
 See guidelines and API for http clients



14

Computer Science and Engineering   The Ohio State University

Passing Arguments: POST

 Encoded as part of the request body
 Advantages:
 Arbitrary length (URLs are limited)
 Arguments not saved in browser history
 Result not cached by browser
 Slightly more secure (not really)

 Args not in location bar, so less likely to be 
accidentally shared

 Content-Type indicates encoding used
 application/x-www-form-urlencoded

 Same encoding as used in GET
 multipart/form-data

 Better for binary data (else 1 byte3 bytes)
 More options too:

 application/xml, application/json, …

Computer Science and Engineering   The Ohio State University

Passing Args: GET vs POST

 GET
GET /passwords/?num=5&len=8&format=plain
HTTP/1.1
Host: www.random.org

 POST
POST /passwords/ HTTP/1.1
Host: www.random.org
Content-Type: application/x-www-form-
urlencoded
Content-Length: 24

num=5&len=8&format=plain



15

Computer Science and Engineering   The Ohio State University

Summary

 HTTP: request/response
 Anatomy of request
 Methods: GET, PUT, DELETE, POST
 Headers
 Body: arguments of POST

 Anatomy of response
 Status Codes: 200, 301, 404, etc
 Headers
 Body: payload

 Tools
 Curl, FF Developer, Mechanize


