
1

Computer Science and Engineering College of Engineering The Ohio State University

HTTP:
Hypertext Transfer Protocol

Lecture 12

Computer Science and Engineering The Ohio State University

HTTP

 Hypertext Transfer Protocol
 History
 Early 90's: developed at CERN, Tim Berners-Lee
 1996: version 1.0
 1999: version 1.1 (ubiquitous today!)
 May 2015: version 2

 Performance improvements: binary, server push…
 Backwards compatible
 Adoption:

https://w3techs.com/technologies/details/ce-http2/all/all

 Simple request/response (client/server)
 Client sends request to (web) server
 (Web) server responds
 “stateless” protocol

2

Computer Science and Engineering The Ohio State University

Request/Response Anatomy

 An HTTP request/response consists of
1. Header: meta information
2. Body (sometimes): payload

 The header consists of
1. Method/Status (for request/response)
2. Header fields, separated by newlines
3. Blank line

Computer Science and Engineering The Ohio State University

Protocol: Request, Response

Request

Response

Method
Header field 1
Header field 2

Body

Status
Header field 1
Header field 2
Header field 3

Body

3

Computer Science and Engineering The Ohio State University

Request Header: First Line

 Syntax of first line:
verb path version

 Verb: GET, HEAD, POST, PUT, DELETE,…

 Path: part of URL (path and query)
scheme://FQDN:port/path?query#fragment

 Version: HTTP/1.1, HTTP/2

 Example:
 For URL

http://news.osu.edu/news/

 First line of request is
GET /news/ HTTP/1.1

Computer Science and Engineering The Ohio State University

Request Header: Header Fields

 Each field on its own line, syntax:
name: value

 Examples (only "Host" is required)
Host: cse.ohio-state.edu
Accept: text/*
Accept: image/gif
If-Modified-Since: Sat, 12 May 2016
19:43:31 GMT
Content-Length: 349
User-Agent: Mozilla/5.0 (X11; Ubuntu;
Linux x86_64; rv:51.0) Gecko/20100101
Firefox/51.0

 Blank line indicates end of headers

4

Computer Science and Engineering The Ohio State University

Header Fields cont’d

 Host
 Only required field
 Q: Why is host field even needed?

 Accept
 Browser preference for MIME type(s) to receive

 If-Modified-Since
 Send payload only if changed since date
 Date must be GMT

 Content-Length
 Required if request has a body
 Number of bytes in body

 User-Agent
 Identifies application making request

Computer Science and Engineering The Ohio State University

Steiner, The New Yorker (1993)

5

Computer Science and Engineering The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: news.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

Computer Science and Engineering The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: news.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

$ curl -A "Mozilla/5.0" news.osu.edu

$ telnet

6

Computer Science and Engineering The Ohio State University

Demo: HTTP Request with telnet

 Example URL
 web.cse.ohio-state.edu/~sivilotti.1/

 At console
$ telnet web.cse.ohio-state.edu 80

 Opens connection to port 80, where a web
server is listening

 Send the following HTTP request:
GET /~sivilotti.1/ HTTP/1.1

Host: web.cse.ohio-state.edu

<blank line>

Computer Science and Engineering The Ohio State University

HTTP Traffic Transparency

 Everything is visible to an eavesdropper
 HTTP headers are plain text
 HTTP payload may be binary

 To protect communication, use encryption
 SSL, TLS: protocols to create secure channel
 Initial handshake between client and server
 Subsequent communication is encrypted

 HTTP over secure channel = HTTPS
 Default port: 443

Request

MFKM5DO388HSshF1GfEr
x5PXsJk0hGVtiK8xoNf4

7

Computer Science and Engineering The Ohio State University

Demo: HTTPS with openssl

 Use openssl instead of telnet
 Negotiates initial handshake with server
 Handles encryption/decryption of traffic

 Example URL
 https://www.osu.edu/

 At console
$ openssl s_client -connect www.osu.edu:443
 Note connection to port 443 (ie https)

 Syntax of subsequent request is the same
 Send the following HTTP request:

GET / HTTP/1.1
Host: www.osu.edu
<blank line>

Computer Science and Engineering The Ohio State University

HTTP Response Anatomy

 Recall, four parts
1. Status (one line)
2. Header fields (separated by newlines)
3. Blank line
4. Body (ie payload)

 Parts 1-3 collectively called “the header”
 Part 1 (status line) syntax:

http-version status-code text
 Examples
HTTP/1.1 200 OK
HTTP/1.1 301 Moved Permanently
HTTP/1.1 404 Not Found

8

Computer Science and Engineering The Ohio State University

Taxonomy of Status Codes
Code Meaning

1xx Informational

2xx Success

3xx Redirection

4xx Client Error

5xx Server Error

Computer Science and Engineering The Ohio State University

Some Common Status Codes
 200 OK

 All is good!
 Response body is the requested document

 301 Moved Permanently
 Requested resource is found somewhere else (please

go there in the future)
 304 Not Modified

 Document hasn’t changed since date/time in If-
Modified-Since field of request

 No response body
 404 Not Found

 Server could not satisfy the request
 It is the client’s fault (design-by-contract?)

 500 Internal Server Error
 Server could not satisfy the request
 It is the server’s fault (design-by-contract?)

9

Computer Science and Engineering The Ohio State University

Response Header: Header Fields

 Each field on its own line, syntax:
name: value

 Examples
Date: Mon, 16 Sep 2019 14:51:38 GMT

Server: Apache/2.4.6 (Red Hat)

Content-Type: text/html; charset=UTF-8

Content-Length: 333

 Blank line indicates end of headers

Computer Science and Engineering The Ohio State University

Demo: Using Terminal

 Use telnet to retrieve
http://web.cse.ohio-state.edu/~paolo

 Fails (see status code)
http://web.cse.ohio-state.edu/~paolo/

 Body is incomplete (no images)
 Body is chunked

 Use curl to retrieve
 Handles https, headers, redirection,

chunking,…
$ curl –L http://web.cse.ohio-sta…

10

Computer Science and Engineering The Ohio State University

Demo: Using Firefox

 Developer > Network
 One GET results in many requests

http://www.cse.osu.edu/~paolo

 For each request, see:
 Request headers
 Response status code
 Response headers
 Response (and preview)

Computer Science and Engineering The Ohio State University

Demo: Using Ruby

 Mechanize: A Ruby gem for HTTP
require 'mechanize'

 Create an agent to send requests
agent = Mechanize.new do |a|

a.user_agent_alias = "Mac Safari"
end

 Use agent to issue a request
page = agent.get "http://www.osu.edu"

 Follow links, submit forms, etc
page.link_with(text: "Carmen").click
s = page.form_with action: /search/

11

Computer Science and Engineering The Ohio State University

Request Methods

 GET, HEAD
 Request: should be safe (no side effects)

 PUT
 Update (or create): should be idempotent

 DELETE
 Delete: should be idempotent

 POST
 Create (or update): changes server state
 Beware re-sending!

 HTTP does not enforce these semantics

Computer Science and Engineering The Ohio State University

HTTP is Stateless

 Every request looks the same
 But maintaining state between requests is

really useful:
 User logs in, then can GET account info
 Shopping cart “remembers” contents

 One solution: Keep a shared secret
 Server's response contains a unique session

identifier (a long random value)
 Subsequent requests from this client include

this secret value
 Server recognizes the secret value, request

must have come from original client

12

Computer Science and Engineering The Ohio State University

HTTP Session

Request

Response
Secret: 38afes7a8

Request
id: 38afes7a8

Response

38afes7a8

Store secret

Check id

Request
id: 38afes7a8

Response

Check id

Computer Science and Engineering The Ohio State University

HTTP Cookies

 Popular mechanism for session manag’nt
 Set in response header field

Set-Cookie: session=38afes7a8
 Any name/value is ok
 Options: expiry, require https

 Client includes cookie(s) in subsequent
requests to that domain

 Sent in request header field:
Cookie: session=38afes7a8

 Cookies also used for
 Tracking/analytics: What path did they take?
 Personalization

13

Computer Science and Engineering The Ohio State University

Passing arguments: GET

 Arguments are key-value pairs
Mascot: Brutus Buckeye
Dept: CS&E

 Can be encoded as part of URL
scheme://FQDN:port/path?query#fragment

 application/x-www-form-urlencoded
 Each key-value pair separated by & (or ;)
 Each key separated from value by =
 Replace spaces with + (arcane!)
 Then normal URL encoding
Mascot=Brutus+Buckeye&Dept=CS%26E

Computer Science and Engineering The Ohio State University

Examples

 Wikipedia search
http://en.wikipedia.org/

w/index.php?
search=ada+lovelace

 OSU news articles
https://news.osu.edu/

?
q=Rhodes+Scholarship&search.x=1

 Random numbers (link)
https://random.org/

passwords/?
num=5&len=8&format=plain

 Demo: use FF Dev to edit/resubmit request
 See guidelines and API for http clients

14

Computer Science and Engineering The Ohio State University

Passing Arguments: POST

 Encoded as part of the request body
 Advantages:
 Arbitrary length (URLs are limited)
 Arguments not saved in browser history
 Result not cached by browser
 Slightly more secure (not really)

 Args not in location bar, so less likely to be
accidentally shared

 Content-Type indicates encoding used
 application/x-www-form-urlencoded

 Same encoding as used in GET
 multipart/form-data

 Better for binary data (else 1 byte3 bytes)
 More options too:

 application/xml, application/json, …

Computer Science and Engineering The Ohio State University

Passing Args: GET vs POST

 GET
GET /passwords/?num=5&len=8&format=plain
HTTP/1.1
Host: www.random.org

 POST
POST /passwords/ HTTP/1.1
Host: www.random.org
Content-Type: application/x-www-form-
urlencoded
Content-Length: 24

num=5&len=8&format=plain

15

Computer Science and Engineering The Ohio State University

Summary

 HTTP: request/response
 Anatomy of request
 Methods: GET, PUT, DELETE, POST
 Headers
 Body: arguments of POST

 Anatomy of response
 Status Codes: 200, 301, 404, etc
 Headers
 Body: payload

 Tools
 Curl, FF Developer, Mechanize

