
Computer Science and Engineering  College of Engineering  The Ohio State University

Ruby:
Object-Oriented Concepts

Lecture 9

Computer Science and Engineering  The Ohio State University

Classes
 Classes have methods and variables

class LightBulb # name with CamelCase
def initialize # special method name
@state = false # @ means "instance variable"

end
def on?
@state # implicit return

end
def flip_switch! # name with snake_case
@state = !@state

end
end

 Instantiation calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322

@state=false>
f.on? #=> false

Computer Science and Engineering  The Ohio State University

Visibility

 Instance variables are always private
 Private to object, not class

 Methods can be private or public (default)
class LightBulb

private def inside
…

end

def access_internals(other_bulb)
inside # ok
other_bulb.inside # no! inside is private
self.inside # no explicit recv'r allowed

end
end

Computer Science and Engineering  The Ohio State University

Getters/Setters
class LightBulb
def initialize(color, state = false)

@color = color # not visible outside object
@state = state # not visible outside object

end
def color

@color
end
def state

@state
end
def state=(value)

@state = value
end

end

Computer Science and Engineering  The Ohio State University

Attributes
class LightBulb
def initialize(color, state = false)

@color = color
@state = state

end
def color

@color
end

attr_accessor :state # name is a symbol

end

Computer Science and Engineering  The Ohio State University

Attributes
class LightBulb
def initialize(color, state = false)

@color = color
@state = state

end

attr_reader :color

attr_accessor :state

end

Computer Science and Engineering  The Ohio State University

Attributes
class LightBulb
attr_reader :color
attr_accessor :state
attr_writer :size

def initialize(color, state = false)
@color = color
@state = state
@size = 0

end
end

Computer Science and Engineering  The Ohio State University

Classes Are Always Open

 A class can always be extended
class Street

def construction … end
end
…
class Street

def repave … end # Street now has 2 methods
end

 Applies to core classes too
class Integer

def log2_of_cube # lg(self^3)
(self**3).to_s(2).length - 1

end
end
500.log2_of_cube #=> 26

Computer Science and Engineering  The Ohio State University

Classes are Always Open (!)

 Existing methods can be redefined!

 When done with system code
(libraries, core …) called “monkey
patching”

 Tempting, but… Just Don’t Do It

Computer Science and Engineering  The Ohio State University

No Overloading

 Method identified by (symbol) name
 No distinction based on number of arguments

 Approximation: default arguments
def initialize(width, height = 10)

@width = width

@height = height

end

 Better alternative: trailing options hash
def initialize(width, options)

 Modern alternative: default keyword args
def initialize(height: 10, width:)

Computer Science and Engineering  The Ohio State University

A Class is an Object Instance too

 Even classes are objects, created by :new
LightBulb = Class.new do #class LightBulb
def initialize

@state = false
end
def on?

@state
end
def flip_switch!

@state = !@state
end

end

Computer Science and Engineering  The Ohio State University

Instance, Class, Class Instance

class LightBulb
@state1 # class instance var
def initialize

@state2 = … # instance variable
@@state3 = … # class variable

end
def bar # instance method

… # sees @state2, @@state3
end
def self.foo # class method

… # sees @state1, @@state3
end

end

Computer Science and Engineering  The Ohio State University

Inheritance

 Single inheritance between classes
class LightBulb < Device

…
end

 Default superclass is Object (which inherits
from BasicObject)

 Super calls parent's method
 No args means forward all args

class LightBulb < Device
def electrify(current, voltage)

do_work
super # with current and voltage

end
end

Computer Science and Engineering  The Ohio State University

Modules

 Another container for definitions
module Stockable

MAX = 1000
class Item … end
def self.inventory … end # utility fn
def order … end

end

 Cannot, themselves, be instantiated
s = Stockable.new # NoMethodError
i = Stockable::Item.new # ok
Stockable.inventory # ok
Stockable.order # NoMethodError

Computer Science and Engineering  The Ohio State University

Modules as Namespaces

 Modules create independent namespaces
 cf. packages in Java

 Access contents via scoping (::)
Math::PI #=> 3.141592653589793
Math::cos 0 #=> 1.0
widget = Stockable::Item.new
x = Stockable::inventory
Post < ActiveRecord::Base
BookController < ActionController::Base

 Style: use dot to invoke utility functions
(ie module methods)

Math.cos 0 #=> 1.0
Stockable.inventory

Computer Science and Engineering  The Ohio State University

Modules are Always Open
 Module contains several related classes
 Style: Each class should be in its own file
 So split module definition

game.rb
module Game
end

game/card.rb
module Game
class Card … end

end

game/player.rb
module Game
class Player … end

end

Computer Science and Engineering  The Ohio State University

Modules as “Mixins”

 Another container for method definitions
module Stockable

def order … end
end

 A module can be included in a class
class LightBulb < Device

include Stockable, Comparable …
end

 Module's (instance) methods/vars are
now (instance) methods/vars for class

bulb = LightBulb.new
bulb.order # from Stockable
if bulb <= old_bulb # from Comparable

Computer Science and Engineering  The Ohio State University

Requirements for Mixins

 Mixins often rely on certain aspects of
classes into which they are included

 Example: Comparable methods use <=>
module Comparable
def <(other) … end
def <=(other) … end

end

 Enumerable methods use #each
 Recall layering in SW I/II
 Class implements kernel methods
 Module implements secondary methods

Computer Science and Engineering  The Ohio State University

Software Engineering

 All the good principles of SW I/II apply
 Single point of control over change
 Avoid magic numbers

 Client view: abstract state, contracts,
invariants

 Implementers view: concrete rep,
correspondence, invariants

 Checkstyle tool: e.g., rubocop
 Documentation (YARD or RDoc)
 Notation for types: yardoc.org/types.html
@param [String, #read] # either is ok

Computer Science and Engineering  The Ohio State University

Summary

 Classes as blueprints for objects
 Contain methods and variables
 Public vs private visibility of methods
 Attributes for automatic getters/setters

 Metaprogramming
 Classes are objects too
 “Class instance” variables

 Single inheritance
 Modules are namespaces and mixins

