
Computer Science and Engineering College of Engineering The Ohio State University

Ruby:
Object-Oriented Concepts

Lecture 9

Computer Science and Engineering The Ohio State University

Classes
 Classes have methods and variables

class LightBulb # name with CamelCase
def initialize # special method name
@state = false # @ means "instance variable"

end
def on?
@state # implicit return

end
def flip_switch! # name with snake_case
@state = !@state

end
end

 Instantiation calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322

@state=false>
f.on? #=> false

Computer Science and Engineering The Ohio State University

Visibility

 Instance variables are always private
 Private to object, not class

 Methods can be private or public (default)
class LightBulb

private def inside
…

end

def access_internals(other_bulb)
inside # ok
other_bulb.inside # no! inside is private
self.inside # no explicit recv'r allowed

end
end

Computer Science and Engineering The Ohio State University

Getters/Setters
class LightBulb
def initialize(color, state = false)

@color = color # not visible outside object
@state = state # not visible outside object

end
def color

@color
end
def state

@state
end
def state=(value)

@state = value
end

end

Computer Science and Engineering The Ohio State University

Attributes
class LightBulb
def initialize(color, state = false)

@color = color
@state = state

end
def color

@color
end

attr_accessor :state # name is a symbol

end

Computer Science and Engineering The Ohio State University

Attributes
class LightBulb
def initialize(color, state = false)

@color = color
@state = state

end

attr_reader :color

attr_accessor :state

end

Computer Science and Engineering The Ohio State University

Attributes
class LightBulb
attr_reader :color
attr_accessor :state
attr_writer :size

def initialize(color, state = false)
@color = color
@state = state
@size = 0

end
end

Computer Science and Engineering The Ohio State University

Classes Are Always Open

 A class can always be extended
class Street

def construction … end
end
…
class Street

def repave … end # Street now has 2 methods
end

 Applies to core classes too
class Integer

def log2_of_cube # lg(self^3)
(self**3).to_s(2).length - 1

end
end
500.log2_of_cube #=> 26

Computer Science and Engineering The Ohio State University

Classes are Always Open (!)

 Existing methods can be redefined!

 When done with system code
(libraries, core …) called “monkey
patching”

 Tempting, but… Just Don’t Do It

Computer Science and Engineering The Ohio State University

No Overloading

 Method identified by (symbol) name
 No distinction based on number of arguments

 Approximation: default arguments
def initialize(width, height = 10)

@width = width

@height = height

end

 Better alternative: trailing options hash
def initialize(width, options)

 Modern alternative: default keyword args
def initialize(height: 10, width:)

Computer Science and Engineering The Ohio State University

A Class is an Object Instance too

 Even classes are objects, created by :new
LightBulb = Class.new do #class LightBulb
def initialize

@state = false
end
def on?

@state
end
def flip_switch!

@state = !@state
end

end

Computer Science and Engineering The Ohio State University

Instance, Class, Class Instance

class LightBulb
@state1 # class instance var
def initialize

@state2 = … # instance variable
@@state3 = … # class variable

end
def bar # instance method

… # sees @state2, @@state3
end
def self.foo # class method

… # sees @state1, @@state3
end

end

Computer Science and Engineering The Ohio State University

Inheritance

 Single inheritance between classes
class LightBulb < Device

…
end

 Default superclass is Object (which inherits
from BasicObject)

 Super calls parent's method
 No args means forward all args

class LightBulb < Device
def electrify(current, voltage)

do_work
super # with current and voltage

end
end

Computer Science and Engineering The Ohio State University

Modules

 Another container for definitions
module Stockable

MAX = 1000
class Item … end
def self.inventory … end # utility fn
def order … end

end

 Cannot, themselves, be instantiated
s = Stockable.new # NoMethodError
i = Stockable::Item.new # ok
Stockable.inventory # ok
Stockable.order # NoMethodError

Computer Science and Engineering The Ohio State University

Modules as Namespaces

 Modules create independent namespaces
 cf. packages in Java

 Access contents via scoping (::)
Math::PI #=> 3.141592653589793
Math::cos 0 #=> 1.0
widget = Stockable::Item.new
x = Stockable::inventory
Post < ActiveRecord::Base
BookController < ActionController::Base

 Style: use dot to invoke utility functions
(ie module methods)

Math.cos 0 #=> 1.0
Stockable.inventory

Computer Science and Engineering The Ohio State University

Modules are Always Open
 Module contains several related classes
 Style: Each class should be in its own file
 So split module definition

game.rb
module Game
end

game/card.rb
module Game
class Card … end

end

game/player.rb
module Game
class Player … end

end

Computer Science and Engineering The Ohio State University

Modules as “Mixins”

 Another container for method definitions
module Stockable

def order … end
end

 A module can be included in a class
class LightBulb < Device

include Stockable, Comparable …
end

 Module's (instance) methods/vars are
now (instance) methods/vars for class

bulb = LightBulb.new
bulb.order # from Stockable
if bulb <= old_bulb # from Comparable

Computer Science and Engineering The Ohio State University

Requirements for Mixins

 Mixins often rely on certain aspects of
classes into which they are included

 Example: Comparable methods use <=>
module Comparable
def <(other) … end
def <=(other) … end

end

 Enumerable methods use #each
 Recall layering in SW I/II
 Class implements kernel methods
 Module implements secondary methods

Computer Science and Engineering The Ohio State University

Software Engineering

 All the good principles of SW I/II apply
 Single point of control over change
 Avoid magic numbers

 Client view: abstract state, contracts,
invariants

 Implementers view: concrete rep,
correspondence, invariants

 Checkstyle tool: e.g., rubocop
 Documentation (YARD or RDoc)
 Notation for types: yardoc.org/types.html
@param [String, #read] # either is ok

Computer Science and Engineering The Ohio State University

Summary

 Classes as blueprints for objects
 Contain methods and variables
 Public vs private visibility of methods
 Attributes for automatic getters/setters

 Metaprogramming
 Classes are objects too
 “Class instance” variables

 Single inheritance
 Modules are namespaces and mixins

