
Computer Science and Engineering  College of Engineering  The Ohio State University

Ruby:
Useful Classes and Methods

Lecture 7

Computer Science and Engineering  The Ohio State University

Ranges

 Instance of class (Range)
indices = Range.new(0, 5)

 But literal syntax is more common
nums = 1..10 # inclusive
b = 'cab'...'cat' # end-exclusive

 Method to_a converts a range to an array
nums.to_a #=> [1,2,3,4,5,6,7,8,9,10]
(0..5).to_a #=> [0,1,2,3,4,5]
(5..0).to_a #=> []

 Methods begin/end, first/last
b.last #=> "cat", excluded from range!
b.last 2 #=> ["car", "cas"]

Computer Science and Engineering  The Ohio State University

Range Inclusion

 Operator === (aka “case equality”)
nums === 6 #=> true
b === 'cat' #=> false

 Two methods: include? cover?
 include? (usually) iterates through range,

looking for (object value) equality
 cover? compares to end points

 Case statement (case/when) with ranges
case target
when 0...mid

puts "first half"
when mid...size

puts "second half"
end

Computer Science and Engineering  The Ohio State University

Strings

 A rich class: 100+ methods!
 See www.ruby-doc.org

 Note convention on method names
 ? suffix: polar result (e.g., boolean)
 ! suffix: dangerous (e.g., changes receiver)

 Examples
 empty? start_with? include? length
 to_f, to_i, split # convert string to…
 upcase downcase capitalize # +/- !
 clear replace # no ! (!!)
 chomp chop slice # +/- !
 sub gsub # +/- !

Computer Science and Engineering  The Ohio State University

Examples

s = "hello world"
s.start_with? "hi" #=> false
s.length #=> 11
"3.14".to_f #=> 3.14
s.upcase #=> "HELLO WORLD", s unchanged
s.capitalize! #=> s is now "Hello world"
s.split #=> ["Hello", "world"]
s.split "o" #=> ["Hell", " w", "rld"]
s.replace "good bye" #=> s is "good bye"
s.slice 3, 4 #=> "d by" (start, length)
s[-2, 1] #=> "y" [start, length]
s.chomp! #=> remove trailing \n if there

Computer Science and Engineering  The Ohio State University

Arrays

 Instance of class (Array)
a = Array.new 4 #=> [nil, nil, nil, nil]
a = Array.new 4, 0 #=> [0, 0, 0, 0]

 But literal notation is common
b = [6, 2, 3.14, "pi", []]
t = %w{hi world} #=> ["hi", "world"]

 Methods for element access, modification
b.length #=> 5
b[0] #=> 6 (also b.first, b.last)
b[-2] #=> "pi"
b[10] = 4 # assignment past end of array
b.length #=> 11, size has changed!
b[2, 5] #=> [3.14, "pi", [], nil, nil]

Computer Science and Engineering  The Ohio State University

Mutators: Growing/Shrinking

 Add/remove from end: push/pop (<<)
n = [10, 20]
n.push 30, 40 #=> [10, 20, 30, 40]
n.pop #=> 40, n now [10, 20, 30]
n << 50 #=> [10, 20, 30, 50]

 Add/remove from beginning:
unshift/shift
n = [10, 20]
n.unshift 30, 40 #=> [30, 40, 10, 20]
n.shift #=> 30

 Push/shift gives FIFO queue
 All modify the receiver (but no !)

Computer Science and Engineering  The Ohio State University

Concatenation and Difference

 Concatenation: +/concat
n = [1]

n.concat [3, 4] #=> [1, 3, 4]

[5, 1] + [5, 2, 3] #=> [5, 1, 5, 2, 3]

n.push [3, 4] #=> [1, 3, 4, [3, 4]]

 Difference: -
n = [1, 1, 3, 3, 4, 5]

n - [1, 2, 4] #=> [3, 3, 5]

 Concat modifies receiver, +/- do not

Computer Science and Engineering  The Ohio State University

And Many More
 Element order

[1, 2, 3, 4].reverse #=> [4, 3, 2, 1]
[1, 2, 3, 4].rotate #=> [2, 3, 4, 1]
[1, 2, 3, 4].shuffle #=> [2, 1, 4, 3]
[3, 4, 2, 1].sort #=> [1, 2, 3, 4]

 Search
[7, 3, 5, 7, 0].find_index 7 #=> 0
[7, 3, 5, 7, 0].rindex 7 #=> 3
[7, 3, 5, 7, 0].include? 0 #=> true

 Transformation
[1, 2, 2, 3, 1].uniq #=> [1, 2, 3]
[1, 2].fill "a" #=> ["a", "a"], N.B. aliases!
["a", "b", "c"].join "_" #=> "a_b_c"
[1,2].product [3,4] #=> [[1,3],[1,4],[2,3],[2,4]]
[[1, 2], [3, 4], [5, 6]].transpose

#=> [[1, 3, 5], [2, 4, 6]]

Computer Science and Engineering  The Ohio State University

To Ponder

Evaluate the ?'s

x = Array.new 3, 5 #=> [5, 5, 5]

x[0] += 1

x #=> ???

y = Array.new 3, [] #=> [[],[],[]]

y[0] << "hi" # adds elt to array

y #=> ???

Computer Science and Engineering  The Ohio State University

Example

 Generate a random sequence of 8
lower case letters, without repetition

 E.g., minbevtj

Computer Science and Engineering  The Ohio State University

Example

 Write a program that reads in a list of
names from stdin (keyboard), then
prints out the list in alphabetical order
in all-caps

 Hint:
 Use gets to read input from stdin
 Returns String up to and including newline

(nil if ^d)
>> x = gets

Hello world

=> "Hello world\n"

Computer Science and Engineering  The Ohio State University

Example: A Solution

index = 0
names = Array.new
while name = gets
name.chomp!.upcase!
names[index] = name
index += 1

end

puts "The sorted array:"
puts names.sort

Computer Science and Engineering  The Ohio State University

Refactor: Array Literal

index = 0
names = []
while name = gets
name.chomp!.upcase!
names[index] = name
index += 1

end

puts "The sorted array:"
puts names.sort

Computer Science and Engineering  The Ohio State University

Refactor: Extend Array

index = 0
names = []
while name = gets

names[index] = name.chomp.upcase
index += 1

end

puts "The sorted array:"
puts names.sort

Computer Science and Engineering  The Ohio State University

Refactor: Push

names = []
while name = gets

names.push name.chomp.upcase

end

puts "The sorted array:"
puts names.sort

Computer Science and Engineering  The Ohio State University

Refactor: Push Operator

names = []
while name = gets

names << name.chomp.upcase

end

puts "The sorted array:"
puts names.sort

Computer Science and Engineering  The Ohio State University

Refactor: Statement Modifier

names, name = [], ""

names << name.chomp.upcase
while name = gets

puts "The sorted array:"
puts names.sort

Computer Science and Engineering  The Ohio State University

Summary

 Naming convention for methods
 Mutators marked with !, polar with ?

 Ranges
 Inclusive, exclusive, operator ===
 Case/when can use ranges

 Strings
 Mutable (c.f. Java)

 Arrays
 Can grow and shrink

Computer Science and Engineering  The Ohio State University

Splat "Operator" *

 Split/gather arrays/elements
 Not really an operator, must be outermost

 Parallel assignment splits/gathers a little
a, b = [1, 2] #=> a, b == 1, 2
array = 1, 2, 3 #=> array == [1, 2, 3]

 On RHS, splats generalize split
a, b, c = 1, *[2, 3] #=> a,b,c == 1,2,3

 On LHS, splat generalizes gather
*r = 1 #=> [1]
a, b, *r = 1, 2, 3, 4 #=> r == [3, 4]
a, b, *r = [1, 2, 3, 4] #=> r == [3,4]
a, b, *r = 1, 2, 3 #=> r == [3]

Computer Science and Engineering  The Ohio State University

Splat in Function Definition/Use

 Ruby enforces: number of arguments
equals number of parameters

 In function definitions, splat gathers up
remaining arguments (ie var args)

def greet(msg, *names)
names.each { |name|

puts "#{msg} #{name}!" }
end
greet "Ciao", "Rafe", "Sarah", "Xi"

 In function calls, splat explodes arrays
into multiple arguments

people = ["Rafe", "Sarah", "Xi"]
greet "Hi", *people

