
Computer Science and Engineering  College of Engineering  The Ohio State University

Ruby:
Objects and Dynamic Types

Lecture 6

Computer Science and Engineering  The Ohio State University

Primitive vs Reference Types

 Recall Java type dichotomy:
 Primitive: int, float, double, boolean,…
 Reference: String, Set, NaturalNumber,…

 A variable is a “slot” in memory
 Primitive: the slot holds the value itself
 Reference: the slot holds a pointer to the

value (an object)

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering  The Ohio State University

Object Value vs Reference Value

 Variable of reference type has both:
 Reference value: value of the slot itself
 Object value: value of object it points to

(corresponding to its mathematical value)

 Variable of primitive type has just one
 Value of the slot itself, corresponding to

its mathematical value

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering  The Ohio State University

Two Kinds of Equality

 Question: “Is x equal to y?”
 A question about the mathematical value

of the variables x and y

 In Java, depending on the type of x
and y we either need to:
 Compare the values of the slots
x == y // for primitive types

 Compare the values of the objects
x.equals(y) // for non-primitive types

Computer Science and Engineering  The Ohio State University

Ruby: “Everything is an Object”

 In Ruby, every variable maps to an object
 Integers, floats, strings, sets, arrays, …

 Benefit: A more consistent mental model
 References are everywhere
 Every variable has both a reference value and

an object value
 Comparison of mathematical values is always

comparison of object value
 Ruby terminology: Reference value is

called the object id
 The 4- or 8-byte number stored in the slot
 Unique identifier for corresponding object
msg = "shark"
msg.object_id #=> 47204497544380

Computer Science and Engineering  The Ohio State University

Everything is an Object

d
width: 12
height: 15
color: "blue"a

34

msg

"shark"

true

<1,2,8,2>

list

done

47204497544380

Computer Science and Engineering  The Ohio State University

Operational Detail: Immediates

 For small integers, the mathematical
value is encoded in the reference value!
 LSB of reference value is 1
 Remaining bits encode value, 2's complement

x = 0
x.object_id #=> 1 (0b00000001)
y = 6
y.object_id #=> 13 (0b00001101)

 Benefit: Performance
 No change to model (everything is an object)

 Known as an “immediate” value
 Other immediates: true, false, nil, symbols

Computer Science and Engineering  The Ohio State University

Objects Have Methods

 Familiar "." operator to invoke (instance)
methods
list = [6, 15, 3, -2]
list.size #=> 4

 Since numbers are objects, they have
methods too!
3.to_s #=> "3"
3.odd? #=> true
3.lcm 5 #=> 15
3.+ 5 #=> 8
3.class #=> Integer
3.methods #=> [:to_s, :inspect, :+, …]

Computer Science and Engineering  The Ohio State University

Pitfall: Equality Operator

 Reference value is still useful sometimes
 “Do these variables refer to the same object?”

 So we still need 2 methods:
x == y
x.equal? y

 Ruby semantics are the opposite of Java!
 == is object value equality
 .equal? is reference value equality

 Example
s1, s2 = "hi", "hi"
s1 == s2 #=> true (obj values equal)
s1.equal? s2 #=> false (ref vals differ)

Computer Science and Engineering  The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value
 Result: Both variables point to the

same object (ie an “alias”)
 Parameter passing works this way too

a b

<5, 1> <3, 4>

Computer Science and Engineering  The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value
 Result: Both variables point to the

same object (ie an “alias”)
 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering  The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value
 Result: Both variables point to the

same object (ie an “alias”)
 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering  The Ohio State University

Aliasing Mutable Objects

 When aliases exist, a statement can
change a variable’s object value
without mentioning that variable
x = [3, 4]

y = x # x and y are aliases

y[0] = 13 # changes x as well!

 Question: What about numbers?
i = 34

j = i # i and j are aliases

j = j + 1 # does this increment i too?

Computer Science and Engineering  The Ohio State University

Immutability

 Recall in Java strings are immutable
 No method changes the value of a string
 A method like concat returns a new instance

 Benefit: Aliasing immutable objects is safe
 Immutability is used in Ruby too

 Numbers, true, false, nil, symbols
list = [3, 4]
list[0] = 13 # changes list's object value

list points to same object
n = 34
n = n + 1 # changes n's reference value

n points to different object
 Pitfall: Unlike Java, strings in Ruby are mutable

Computer Science and Engineering  The Ohio State University

Assignment Operators

 Parallel assignment
x, y, z = y, 10, radius

 Arithmetic contraction
 += -= *= /= %= **=
 Pitfall: no ++ or -- operators (use += 1)

 Logical contraction
 ||= &&=
 Idiom: ||= for initializing potentially nil

variables
 Pitfall (minor):

 x ||= y not quite equivalent to x = x || y
 Better to think of it as x || x = y
 Usually amounts to the same thing

Computer Science and Engineering  The Ohio State University

Declared vs Dynamic Types

 In Java, types are associated with both
 Variables (declared / static type), and
 Objects (dynamic / run-time type)
Queue line = new Queue1L();

 Recall: Programming to the interface
 Compiler uses declared type for checks

line.inc(); // error no such method
line = new Set1L(); // err. wrong type

boolean isEmpty (Set s) {…}
if isEmpty(line) … // error arg type

Computer Science and Engineering  The Ohio State University

Statically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue Queue1L

String String

Shape
Rectangle

Computer Science and Engineering  The Ohio State University

Dynamically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Rectangle

Computer Science and Engineering  The Ohio State University

Dynamically Typed Language

 Equivalent definitions:
 No static types
 Dynamic types only
 Variables do not have type, objects do

Computer Science and Engineering  The Ohio State University

Function Signatures

 Statically typed
String parse(char[] s, int i) {… return e;}
out = parse(t, x);

 Declare parameter and return types
 See s, i, and parse

 The compiler checks conformance of
 (Declared) types of arguments (t, x)
 (Declared) type of return expression (e)
 (Declared) type of expression using parse (out)

 Dynamically typed
def parse(s, i) … e end
out = parse t, x

 You are on your own!

Computer Science and Engineering  The Ohio State University

Type Can Change at Run-time

Statically Typed
//a is undeclared

String a;

//a is null string

a = "hi;

//compile-time err

a = "hi";

a = 3;

//compile-time err

a.push();

//compile-time err

Dynamically Typed
a is undefined

a = a

a is nil

a = "hi

load-time error

a = "hi"

a = 3

a is now a number

a.push

run-time error

Computer Science and Engineering  The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Computer Science and Engineering  The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering  The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering  The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

String msg = "hello";

Computer Science and Engineering  The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

msgs

String[] String String String String

"hello"

String
"world"

String

"hi there"

String

String msg = "hello";

String[] msgs = ["hello",
"world",
...];

Computer Science and Engineering  The Ohio State University

Arrays: Dynamic Typing

msg

"hello"

String

msgs

"hello"

String
"world"

String

"hi there"

String

msg = "hello";

msgs = ["hello",
"world",
...];

Computer Science and Engineering  The Ohio State University

Consequence: Heterogeneity

msgs

"hello"

String
3.14

Float

17

Integer

msgs = ["hello",
3.14,
...];

Computer Science and Engineering  The Ohio State University

Statically Typed
 Earlier error detection
 Clearer APIs
 More compiler

optimizations
 Richer IDE support

Dynamically Typed
 Less code to write
 Less code to change
 Quicker prototyping
 No casting needed

Tradeoffs

Computer Science and Engineering  The Ohio State University

Strongly Typed

 Just because variables don’t have
types, doesn’t mean you can do
anything you want
>> "hi".upcase

=> "HI"

>> "hi".odd?

NoMethodError: undefined method `odd?'
for String

>> puts "The value of x is " + x

TypeError: can't convert Integer to
String

Computer Science and Engineering  The Ohio State University

Summary

 Object-oriented
 References are everywhere
 Assignment copies reference value (alias)
 Primitives (immediates) are objects too
 == vs .equal? are flipped

 Dynamically type
 Objects have types, variables do not

 Strongly Typed
 Incompatible types produce (run time)

error

