
Computer Science and Engineering College of Engineering The Ohio State University

Ruby:
Objects and Dynamic Types

Lecture 6

Computer Science and Engineering The Ohio State University

Primitive vs Reference Types

 Recall Java type dichotomy:
 Primitive: int, float, double, boolean,…
 Reference: String, Set, NaturalNumber,…

 A variable is a “slot” in memory
 Primitive: the slot holds the value itself
 Reference: the slot holds a pointer to the

value (an object)

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering The Ohio State University

Object Value vs Reference Value

 Variable of reference type has both:
 Reference value: value of the slot itself
 Object value: value of object it points to

(corresponding to its mathematical value)

 Variable of primitive type has just one
 Value of the slot itself, corresponding to

its mathematical value

d
width: 12
height: 15
color: "blue"

34

a

Computer Science and Engineering The Ohio State University

Two Kinds of Equality

 Question: “Is x equal to y?”
 A question about the mathematical value

of the variables x and y

 In Java, depending on the type of x
and y we either need to:
 Compare the values of the slots
x == y // for primitive types

 Compare the values of the objects
x.equals(y) // for non-primitive types

Computer Science and Engineering The Ohio State University

Ruby: “Everything is an Object”

 In Ruby, every variable maps to an object
 Integers, floats, strings, sets, arrays, …

 Benefit: A more consistent mental model
 References are everywhere
 Every variable has both a reference value and

an object value
 Comparison of mathematical values is always

comparison of object value
 Ruby terminology: Reference value is

called the object id
 The 4- or 8-byte number stored in the slot
 Unique identifier for corresponding object
msg = "shark"
msg.object_id #=> 47204497544380

Computer Science and Engineering The Ohio State University

Everything is an Object

d
width: 12
height: 15
color: "blue"a

34

msg

"shark"

true

<1,2,8,2>

list

done

47204497544380

Computer Science and Engineering The Ohio State University

Operational Detail: Immediates

 For small integers, the mathematical
value is encoded in the reference value!
 LSB of reference value is 1
 Remaining bits encode value, 2's complement

x = 0
x.object_id #=> 1 (0b00000001)
y = 6
y.object_id #=> 13 (0b00001101)

 Benefit: Performance
 No change to model (everything is an object)

 Known as an “immediate” value
 Other immediates: true, false, nil, symbols

Computer Science and Engineering The Ohio State University

Objects Have Methods

 Familiar "." operator to invoke (instance)
methods
list = [6, 15, 3, -2]
list.size #=> 4

 Since numbers are objects, they have
methods too!
3.to_s #=> "3"
3.odd? #=> true
3.lcm 5 #=> 15
3.+ 5 #=> 8
3.class #=> Integer
3.methods #=> [:to_s, :inspect, :+, …]

Computer Science and Engineering The Ohio State University

Pitfall: Equality Operator

 Reference value is still useful sometimes
 “Do these variables refer to the same object?”

 So we still need 2 methods:
x == y
x.equal? y

 Ruby semantics are the opposite of Java!
 == is object value equality
 .equal? is reference value equality

 Example
s1, s2 = "hi", "hi"
s1 == s2 #=> true (obj values equal)
s1.equal? s2 #=> false (ref vals differ)

Computer Science and Engineering The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value
 Result: Both variables point to the

same object (ie an “alias”)
 Parameter passing works this way too

a b

<5, 1> <3, 4>

Computer Science and Engineering The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value
 Result: Both variables point to the

same object (ie an “alias”)
 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering The Ohio State University

Assignment (Just Like Java)

 Assignment copies the reference value
 Result: Both variables point to the

same object (ie an “alias”)
 Parameter passing works this way too

a b

a = b;

<5, 1> <3, 4>

a b

<5, 1> <3, 4>

Computer Science and Engineering The Ohio State University

Aliasing Mutable Objects

 When aliases exist, a statement can
change a variable’s object value
without mentioning that variable
x = [3, 4]

y = x # x and y are aliases

y[0] = 13 # changes x as well!

 Question: What about numbers?
i = 34

j = i # i and j are aliases

j = j + 1 # does this increment i too?

Computer Science and Engineering The Ohio State University

Immutability

 Recall in Java strings are immutable
 No method changes the value of a string
 A method like concat returns a new instance

 Benefit: Aliasing immutable objects is safe
 Immutability is used in Ruby too

 Numbers, true, false, nil, symbols
list = [3, 4]
list[0] = 13 # changes list's object value

list points to same object
n = 34
n = n + 1 # changes n's reference value

n points to different object
 Pitfall: Unlike Java, strings in Ruby are mutable

Computer Science and Engineering The Ohio State University

Assignment Operators

 Parallel assignment
x, y, z = y, 10, radius

 Arithmetic contraction
 += -= *= /= %= **=
 Pitfall: no ++ or -- operators (use += 1)

 Logical contraction
 ||= &&=
 Idiom: ||= for initializing potentially nil

variables
 Pitfall (minor):

 x ||= y not quite equivalent to x = x || y
 Better to think of it as x || x = y
 Usually amounts to the same thing

Computer Science and Engineering The Ohio State University

Declared vs Dynamic Types

 In Java, types are associated with both
 Variables (declared / static type), and
 Objects (dynamic / run-time type)
Queue line = new Queue1L();

 Recall: Programming to the interface
 Compiler uses declared type for checks

line.inc(); // error no such method
line = new Set1L(); // err. wrong type

boolean isEmpty (Set s) {…}
if isEmpty(line) … // error arg type

Computer Science and Engineering The Ohio State University

Statically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue Queue1L

String String

Shape
Rectangle

Computer Science and Engineering The Ohio State University

Dynamically Typed Language

d
width: 12
height: 15
color: "blue"

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Rectangle

Computer Science and Engineering The Ohio State University

Dynamically Typed Language

 Equivalent definitions:
 No static types
 Dynamic types only
 Variables do not have type, objects do

Computer Science and Engineering The Ohio State University

Function Signatures

 Statically typed
String parse(char[] s, int i) {… return e;}
out = parse(t, x);

 Declare parameter and return types
 See s, i, and parse

 The compiler checks conformance of
 (Declared) types of arguments (t, x)
 (Declared) type of return expression (e)
 (Declared) type of expression using parse (out)

 Dynamically typed
def parse(s, i) … e end
out = parse t, x

 You are on your own!

Computer Science and Engineering The Ohio State University

Type Can Change at Run-time

Statically Typed
//a is undeclared

String a;

//a is null string

a = "hi;

//compile-time err

a = "hi";

a = 3;

//compile-time err

a.push();

//compile-time err

Dynamically Typed
a is undefined

a = a

a is nil

a = "hi

load-time error

a = "hi"

a = 3

a is now a number

a.push

run-time error

Computer Science and Engineering The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

Computer Science and Engineering The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering The Ohio State University

Changing Dynamic Type

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg

"hello"

<1, 2, 8, 2>

line

Queue1L

String

msg, line = line, msg

Computer Science and Engineering The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

String msg = "hello";

Computer Science and Engineering The Ohio State University

Arrays: Static Typing

msg

"hello"

String String

msgs

String[] String String String String

"hello"

String
"world"

String

"hi there"

String

String msg = "hello";

String[] msgs = ["hello",
"world",
...];

Computer Science and Engineering The Ohio State University

Arrays: Dynamic Typing

msg

"hello"

String

msgs

"hello"

String
"world"

String

"hi there"

String

msg = "hello";

msgs = ["hello",
"world",
...];

Computer Science and Engineering The Ohio State University

Consequence: Heterogeneity

msgs

"hello"

String
3.14

Float

17

Integer

msgs = ["hello",
3.14,
...];

Computer Science and Engineering The Ohio State University

Statically Typed
 Earlier error detection
 Clearer APIs
 More compiler

optimizations
 Richer IDE support

Dynamically Typed
 Less code to write
 Less code to change
 Quicker prototyping
 No casting needed

Tradeoffs

Computer Science and Engineering The Ohio State University

Strongly Typed

 Just because variables don’t have
types, doesn’t mean you can do
anything you want
>> "hi".upcase

=> "HI"

>> "hi".odd?

NoMethodError: undefined method `odd?'
for String

>> puts "The value of x is " + x

TypeError: can't convert Integer to
String

Computer Science and Engineering The Ohio State University

Summary

 Object-oriented
 References are everywhere
 Assignment copies reference value (alias)
 Primitives (immediates) are objects too
 == vs .equal? are flipped

 Dynamically type
 Objects have types, variables do not

 Strongly Typed
 Incompatible types produce (run time)

error

