Git:

M . I I I .
mputer Science and Engineering B College of Engineering B The Ohio State Universi

Co

Lecture 4

Basic Workflow: Overview

Comp

Configure git (everyone)
Create central repo (1 person)
Create local repo (everyone)

. As you work (everyone):
B Commit locally

B Fetch/merge as appropriate
B Push to share

A W N B~

Step 1: Configure Git

Computer Science and Engineering B The Ohio State University

Each team member, in their own VM

B Set identity for authoring commits

$ git config --global user.name "Brutus
Buckeye"

S git config --global user.email
bbl@osu.edu

B Optional: diff and merge tool (eg meld)
$ sudo apt install meld # to get tool

$ git config --global merge.tool meld
S git config --global diff.tool meld

example use:
$ git difftool e9d36

Step 2: Initialize Central Rep

CCCCCCCCC

University

One person, once per project:

Hosting services (GitHub, BitBucket...)
use a web interface for this step

Or, could use stdlinux instead:

B Create central repository in group's
project directory (/project/c3901aa03)

$ cd /project/c3901laal3
$ mkdir rep.git # ordinary directory

B Initialize central repository as bare and
shared within the group

$ git init --bare --shared rep.git

Step 3: Create Local Repository

Each team member, once, in their VM

B Create local repository by cloning the
central repository

S git clone
ssh://brut@stdlinux.cse.ohio-
state.edu//project/c3901aal03/projl.git
mywork

B You will be prompted for your (stdlinux)
password (every time you fetch and push
too)

B To avoid having to enter your password
each time, create an ssh key-pair (see VM
setup instructions)

Step 4: Local Development

Computer Science The Ohio State University

Each team member repeats:

B Edit and commit (to local repository) often
$ git status/add/rm/commit

m Pull others' work when can benefit

$ git fetch origin # bring in changes
$ git log/checkout # examine new work
$ git merge, commit # merge work

B Push to central repository when confident
$ git push origin master # share

Professional Git

Computer Science and Engineering B The Ohio State University

Commit/branch conventions

Deciding what goes in, and what stays
out of the store

B Share all the things that should be shared
B Only share things that should be shared

Normalizing contents of the store
B Windows vs linux line endings

Commit/Branch Conventions

Computer S

[eam strategy for managing the
structure of the DAG (ie the store)

Examples:

B “Master is always deployable”

O All work is done on other branches, merged
with master only when result compiles

B “Feature branches”, “developer branches”

O Each feature developed on its own branch vs.
each developer works on their own branch

B “Favor rebase over merge”
O Always append to latest origin/branch

Example: Branch-Based Dev

Computer Science and Engineering B The Ohio State University

release

feature
develop branches hotfixes master

branches

Time

Severe bug
fixed for
production:
hotfix 0.2

Incorporate
bugfix in
develop
\O Tag
0.2
N& Start of

Major
feature for
next release

Feature
for future
release

release
branch for

From this point on,
“next release”
means the release
after 1.0

O5

Bugfixes from
rel. branch

et 1.0
continuously
merged back
into develop

Example: Trunk-Based Dev

Computer Science and Engineering B The Ohio State University

master release

branches

Tirr=

release-0.x

Savire bug
fized for
production

Faature
developrment
hapgpens in
the master
branch

Chemy-pick
bugfix back
Lo mater

Features am
na more
spcial than
any ctber

Bugfixes are
conkinussusly

What Goes Into Central Repo'?

Computer Sci ing @ The Ohio State University

O Avoid developer-specific environment settlngs
B Hard-coded file/direcotry paths from local machine
B Passwords
B Better: Use variables (eg $OSU_CSE_LIB) instead
O Avoid IDE-specific files (.settings)

B But OK to keep . prcgfect and .classpath in repo so it is
easier to get started by cloning

O Avoid living binaries (docx, pdf)

B Meaningless diffs
O Avoid generated files

B Javadoc HTML, .class, .jar, compiled files
O Agree on code formatting

B Auto-format is good, but only if everyone uses the
same format settlngs|

B Spaces vs tabs, brace position, etc

Ignoring Files from Working Tree

O

O

Computer Science and Engineering B The Ohio State University

Use a .gitignore file in root of project
B Committed as part of the project
B Consistent policy for everyone on team

Example:

see github:gitignore/Ruby, /Global/
Ignore auto-saved emacs files

* A~

Ignore bundler config

/ .bundle

Ignore the default SQLite database
/db/* .sqlite3

Ignore all logfiles and tempfiles
/log/*

/tmp/*

Problem: End-of-line Confusion

CCCCCCCCC

ty

Differences between OS's in how a “hew
line” is encoded in a text file

B Windows: CR + LF (ie "\r\n", OxOD 0x0A)
B Unix/Mac: LF (ie "\n", 0x0A)
Demo: hexdump

Difference is hidden by most editors

B An IDE might recognize either when opening
a file, but convert all to \r\n when saving

But difference matters to git when

comparing files!

Problem: OS differences within team

B Changing 1 line causes every line to be
modified

B Flood of spurious changes masks the real edit

Solution: Normalization

Git convention: use \n in the store
B Working tree uses OS's native eol

B Convert when moving data between the
two (e.g., commit, checkout)

Note: Applies to text files only

B A “binary” file, like a jpg, might contain
these bytes (Ox0OD and/or 0x0A), but they
should not be converted

How does git know whether a file is
text or binary?

B Heuristics: auto-detect based on contents
B Configuration: filename matches a pattern

Normalization With .gitattributes

O

Computer Science and Engineering B The Ohio State University

Use a .gitattributes file in root of project

B Committed as part of the project

B Consistent policy for everyone on team

Example:

Auto detect text files and perform LF normalization
* text=auto

.classpath text
.project text

These files are text, should be normalized (crlf=>1f)
* . Jjava text

* .md text

* . txt text

*

*

These files are binary, should be left untouched
*.class binary
*.jar binary

Ninja Git

Computer Science and Engineering B

[emporary storage with stash

Undoing mistakes in working tree with
reset

Undoing mistakes in store with amend
DAG surgery with rebase

Co

Advanced: Temporary Storage

rsity

Say you have uncommitted work and

want to look at a different branch

Checkout won't work!

‘ HEAD |
(master
" L y o))
a € b € c € d
. y,

R
\

\
uncommited
changes

S

Stash: Push Work Onto A Stack

Computer

$ git stash # repo now clean
$ git checkout ..etc.. # feel free to poke around

| HEAD II
[master] [stash } ™

)4 o) £

a € b |[€ cC [€ d <«<— e

Stash: Pop Work Off the Stack

ity

$ git stash pop # restores state of wt (and store)

equivalent to:
$ git stash apply # restore wt and index
$ git stash drop # restore store

‘HEADl
master

™

uncommited
changes

S

Advanced: Undoing Mistakes

Computer

ate University

Say you want to throw away all your
uncommited work

B e "Roll back" to last commited state

Checkout won't work! £
| HEAD | II
[master] R\\
uncommited
o 5 y P p\ changes
a € b |e C |€ d
_ J 0

Reset: Discarding Changes

Computer Science and Engineering B The Ohio State University

$ git reset --hard
$ git clean --dry-run # list untracked files

$ git clean --force # remove untracked files

‘HEADl
master

(5]

replaced to be
p\ same as HEAD

nd

!_“

Reset: Discarding Commits

Computer Science and Engineering B The Ohio State University

$ git reset --hard HEAD~1
no need to git clean, since wt was already clean

HEAD moved _
(and attached branch) ™. -
HEAD) e |
K
[maint] [master} AN
replaced to be

r \ same as

& A v 2 HEAD~1

a ¢ b < C € d !

X L Y
e

now unreachable ¥

The Power to Change History

Computer Science a

University

Changing the store lets us:
B Fix mistakes in recent commits

B Clean up messy DAGs to make history
look more linear

Rule: Never change shared history

B Once something has been pushed to a
remote repo (eg origin), do not change
that part of the DAG

B So: A push is really a commitment!

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

| HEAD \

-<

[master]
uncommited
. 5 N\ changes
a < b
L J'B

ind

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

)4
| HEAD
[master] k\\
clean
ar B y)
a € b ¢ C
q)Y

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

B Oops! That wasn't quite right...

(o)
| HEAD
[master] R‘\
uncommited
. 2 y N\ changes
a ¢ b < C
N Pl

ind

Advanced: Rewriting

I I . t
Computer Science and Engineering ® The Ohio St

Problem 1: Wrong or incomplete

commit
B Oops! That wasn't quite right...
o
| HEAD I
[master] k\\
clean
[« g 14) h
a € b |e C |€ d
. J(S

ate University

Advanced: Rewriting History

commit
B Oops! That wasn't quite right...

Problem 1: Wrong or incomplete

&

HEAD
[master] "
clean
ar 5 Y) 3 h
a < b [€ c ¢ d <
¥ s

ind

ate University

Advanced: Rewriting History

ate University

Problem 1: Wrong or incomplete
commit

Result: Lots of tiny “fix it”, “oops”,
“retry” commits .
HEAD
[master] R\
clean
ar 5 Y o) €)
a |€ b e cC € d < e
" e

ind

Commit --amend: Tip Repair

ate University

Alternative: Change most recent
commit(s)

(o)
| HEAD
[master] R‘\
uncommited
o P y N\ changes
a ¢ b < C
N P

ind

Commit --amend: Tip Repair

Computer Science and Engineering B The Ohio State University

$ git add --all .
$ git commit —--amend --no-edit
no-edit keeps the same commit message

o
‘HEAD II
[master] k\\
clean
ar B 5)
a € b e f
- 0)2
! ind

i Brand new commit,
different hash

Advanced: Rewriting

moster

f
a B /

a <«<— b

\

I I . t
Computer Science and Engineering ® The Ohio St

Problem 2: As an independent branch
is being developed, main also evolves

ate University

Advanced: Rewriting

moster

f
a B /

a <«<— b

\

I I . t
Computer Science and Engineering ® The Ohio St

Problem 2: As an independent branch
is being developed, main also evolves

ate University

Advanced: Rewriting

I I . t
Computer Science and Engineering ® The Ohio St

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main

with (incomplete) branch

0

f

o

a <« b <

\

[master]

ate University

Advanced: Rewriting

with (incomplete) branch

HEAD

[menu] [master]

I I . t
Computer Science and Engineering ® The Ohio St

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main

o

f g
4 o) £
C d «<— e

~

ate University

Advanced: Rewriting History

ate University

Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main
with (incomplete) branch
‘HEAD\

[master] [menu]

(7] K U \

f g € h
a p /y o) g
a <«<— b [« cC d «<— e

Rebase: DAG Surger

Computer Science and Engineering B

Alternative: Move commits to a
different part of the DAG

[master} menu

0

f

K

g

a € b C

Rebase: DAG Surgery

$ git rebase master

Computer Science an

d Engineering B The Ohio State University

merging master into menu is now a fast-forward

[master}

0 K

~N

Git Clients and Hosting Services

Recommended client: Command line!

Alternative: Various GUIs

B Linux: gitg, git-gui, git-cola, giggle
B Win/mac GUI: SourceTree

B IDEs: RubyMine

Lots of sites for hosting your repos:

B GitHub, Bitbucket, SourceForge, Google
Code,...

These cloud services provide
B Storage space

B Pretty web interface

B [ssues, bug tracking

B Workflow with "forks" and "pull requests" to
promote contributions from others

Clarity

Computer Science and Engineering B The Ohio State University

Warning: Academic Misconduct

Computer

ty

GitHub is a very popular service
B But only public repo's are free
B Edu discount gives free private repo's

B 3901 has an account ("organization") for
private repo's (see class web site)

Bitbucket has free private repo's, for
small teams (< 5 collaborators)

Public repo's containing coursework
can create academic misconduct issues
B Problems for poster

B Problems for plagiarist

Mercurial (hg): Another DVCS

Computer Science and Engineering

versity

Slightly simpler mental model

Some differences in terminology

B git fetch/pull ~= hg pull/fetch

B git checkout ~= hg update

Some (minor) differences in features
B No rebasing (only merging)

B No octopus merge (#parents <= 2)
But key ideas are identical

B Repository = working directory + store
B Send/Receive changes between stores

Summary

Workflow

B Fetch/push frequency

B Respect team conventions for how/when
to use different branches

Central repo is a shared resource
B Contains common (source) code

B Normalize line endings and formats
Advanced techniques

B Stash, reset, rebase

Advice

B Learn by using the command line
B Beware academic misconduct

