
Computer Science and Engineering  College of Engineering  The Ohio State University

Git:
Miscellaneous Topics

Lecture 4

Computer Science and Engineering  The Ohio State University

Basic Workflow: Overview

1. Configure git (everyone)
2. Create central repo (1 person)
3. Create local repo (everyone)
4. As you work (everyone):
 Commit locally
 Fetch/merge as appropriate
 Push to share

Computer Science and Engineering  The Ohio State University

Step 1: Configure Git

 Each team member, in their own VM
 Set identity for authoring commits
$ git config --global user.name "Brutus
Buckeye"

$ git config --global user.email
bb@osu.edu

 Optional: diff and merge tool (eg meld)
$ sudo apt install meld # to get tool

$ git config --global merge.tool meld

$ git config --global diff.tool meld

example use:

$ git difftool e9d36

Computer Science and Engineering  The Ohio State University

Step 2: Initialize Central Rep

 One person, once per project:
 Hosting services (GitHub, BitBucket…)

use a web interface for this step
 Or, could use stdlinux instead:
 Create central repository in group's

project directory (/project/c3901aa03)
$ cd /project/c3901aa03
$ mkdir rep.git # ordinary directory
 Initialize central repository as bare and

shared within the group
$ git init --bare --shared rep.git

Computer Science and Engineering  The Ohio State University

Step 3: Create Local Repository

 Each team member, once, in their VM
 Create local repository by cloning the

central repository
$ git clone
ssh://brut@stdlinux.cse.ohio-
state.edu//project/c3901aa03/proj1.git
mywork
 You will be prompted for your (stdlinux)

password (every time you fetch and push
too)

 To avoid having to enter your password
each time, create an ssh key-pair (see VM
setup instructions)

Computer Science and Engineering  The Ohio State University

Step 4: Local Development

 Each team member repeats:
 Edit and commit (to local repository) often
$ git status/add/rm/commit

 Pull others' work when can benefit
$ git fetch origin # bring in changes

$ git log/checkout # examine new work

$ git merge, commit # merge work

 Push to central repository when confident
$ git push origin master # share

Computer Science and Engineering  The Ohio State University

Professional Git

 Commit/branch conventions
 Deciding what goes in, and what stays

out of the store
 Share all the things that should be shared
 Only share things that should be shared

 Normalizing contents of the store
 Windows vs linux line endings

Computer Science and Engineering  The Ohio State University

Commit/Branch Conventions

 Team strategy for managing the
structure of the DAG (ie the store)

 Examples:
 “Master is always deployable”

 All work is done on other branches, merged
with master only when result compiles

 “Feature branches”, “developer branches”
 Each feature developed on its own branch vs.

each developer works on their own branch

 “Favor rebase over merge”
 Always append to latest origin/branch

Computer Science and Engineering  The Ohio State University

Example: Branch-Based Dev

Computer Science and Engineering  The Ohio State University

Example: Trunk-Based Dev

Computer Science and Engineering  The Ohio State University

What Goes Into Central Repo?
 Avoid developer-specific environment settings

 Hard-coded file/direcotry paths from local machine
 Passwords
 Better: Use variables (eg $OSU_CSE_LIB) instead

 Avoid IDE-specific files (.settings)
 But OK to keep .project and .classpath in repo so it is

easier to get started by cloning
 Avoid living binaries (docx, pdf)

 Meaningless diffs
 Avoid generated files

 Javadoc HTML, .class, .jar, compiled files
 Agree on code formatting

 Auto-format is good, but only if everyone uses the
same format settings!

 Spaces vs tabs, brace position, etc

Computer Science and Engineering  The Ohio State University

Ignoring Files from Working Tree

 Use a .gitignore file in root of project
 Committed as part of the project
 Consistent policy for everyone on team

 Example:
see github:gitignore/Ruby, /Global/
Ignore auto-saved emacs files
*~
Ignore bundler config
/.bundle
Ignore the default SQLite database
/db/*.sqlite3
Ignore all logfiles and tempfiles
/log/*
/tmp/*

Computer Science and Engineering  The Ohio State University

Problem: End-of-line Confusion

 Differences between OS's in how a “new
line” is encoded in a text file
 Windows: CR + LF (ie "\r\n", 0x0D 0x0A)
 Unix/Mac: LF (ie "\n", 0x0A)

 Demo: hexdump
 Difference is hidden by most editors
 An IDE might recognize either when opening

a file, but convert all to \r\n when saving
 But difference matters to git when

comparing files!
 Problem: OS differences within team
 Changing 1 line causes every line to be

modified
 Flood of spurious changes masks the real edit

Computer Science and Engineering  The Ohio State University

Solution: Normalization

 Git convention: use \n in the store
 Working tree uses OS's native eol
 Convert when moving data between the

two (e.g., commit, checkout)
 Note: Applies to text files only
 A “binary” file, like a jpg, might contain

these bytes (0x0D and/or 0x0A), but they
should not be converted

 How does git know whether a file is
text or binary?
 Heuristics: auto-detect based on contents
 Configuration: filename matches a pattern

Computer Science and Engineering  The Ohio State University

Normalization With .gitattributes
 Use a .gitattributes file in root of project

 Committed as part of the project
 Consistent policy for everyone on team

 Example:
Auto detect text files and perform LF normalization
* text=auto

These files are text, should be normalized (crlf=>lf)
*.java text
*.md text
*.txt text
*.classpath text
*.project text

These files are binary, should be left untouched
*.class binary
*.jar binary

Computer Science and Engineering  The Ohio State University

Ninja Git

 Temporary storage with stash
 Undoing mistakes in working tree with

reset
 Undoing mistakes in store with amend
 DAG surgery with rebase

Computer Science and Engineering  The Ohio State University

Advanced: Temporary Storage

 Say you have uncommitted work and
want to look at a different branch

 Checkout won't work!

a b dc

wt

master

HEAD

uncommited
changes

maint

ind

Computer Science and Engineering  The Ohio State University

a b dc e

maint master

HEAD

Stash: Push Work Onto A Stack

wt

clean

ind

$ git stash # repo now clean
$ git checkout …etc… # feel free to poke around

stash

Computer Science and Engineering  The Ohio State University

Stash: Pop Work Off the Stack

a b dc

wt

master

HEAD

uncommited
changes

maint

ind

$ git stash pop # restores state of wt (and store)

equivalent to:
$ git stash apply # restore wt and index
$ git stash drop # restore store

Computer Science and Engineering  The Ohio State University

Advanced: Undoing Mistakes

 Say you want to throw away all your
uncommited work
 ie "Roll back" to last commited state

 Checkout won't work!

a b dc

wt

master

HEAD

uncommited
changes

maint

ind

Computer Science and Engineering  The Ohio State University

Reset: Discarding Changes

a b dc

master

HEAD

maint

$ git reset --hard
$ git clean –-dry-run # list untracked files
$ git clean –-force # remove untracked files

ind

replaced to be
same as HEAD

wt

Computer Science and Engineering  The Ohio State University

Reset: Discarding Commits

a b dc

master

HEAD

maint

$ git reset --hard HEAD~1
no need to git clean, since wt was already clean

ind

replaced to be
same as
HEAD~1

wt

HEAD moved
(and attached branch)

now unreachable

Computer Science and Engineering  The Ohio State University

The Power to Change History

 Changing the store lets us:
 Fix mistakes in recent commits
 Clean up messy DAGs to make history

look more linear

 Rule: Never change shared history
 Once something has been pushed to a

remote repo (eg origin), do not change
that part of the DAG

 So: A push is really a commitment!

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

a b

master

HEAD

ind

wt

uncommited
changes

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

a b c

master

HEAD wt

clean

ind

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit
 Oops! That wasn’t quite right…

a b c

master

HEAD

ind

wt

uncommited
changes

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit
 Oops! That wasn’t quite right…

a b dc

master

HEAD wt

clean

ind

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit
 Oops! That wasn’t quite right…

a b dc e

master

HEAD wt

clean

ind

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

 Result: Lots of tiny “fix it”, “oops”,
“retry” commits

a b dc e

master

HEAD wt

clean

ind

Computer Science and Engineering  The Ohio State University

Commit --amend: Tip Repair

 Alternative: Change most recent
commit(s)

a b c

master

HEAD

ind

wt

uncommited
changes

Computer Science and Engineering  The Ohio State University

Commit --amend: Tip Repair

$ git add –-all .
$ git commit –-amend –-no-edit
no-edit keeps the same commit message

a b

wt

clean

ind

f

master

HEAD

Brand new commit,
different hash

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

a b

HEAD

menumaster

f

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

a b

HEAD

menumaster

f

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b c

menu

f

HEAD

master

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b dc e

HEAD

master

f g

menu

Computer Science and Engineering  The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b dc e

HEAD

master

f hg

menu

Computer Science and Engineering  The Ohio State University

Rebase: DAG Surgery

 Alternative: Move commits to a
different part of the DAG

a b dc

f g

menu

HEAD

master

Computer Science and Engineering  The Ohio State University

Rebase: DAG Surgery

a b dc

f g

menu

HEAD

master

$ git rebase master
merging master into menu is now a fast-forward

Computer Science and Engineering  The Ohio State University

Git Clients and Hosting Services

 Recommended client: Command line!
 Alternative: Various GUIs
 Linux: gitg, git-gui, git-cola, giggle
 Win/mac GUI: SourceTree
 IDEs: RubyMine

 Lots of sites for hosting your repos:
 GitHub, Bitbucket, SourceForge, Google

Code,…
 These cloud services provide
 Storage space
 Pretty web interface
 Issues, bug tracking
 Workflow with "forks" and "pull requests" to

promote contributions from others

Computer Science and Engineering  The Ohio State University

Clarity

git != GitHub

Computer Science and Engineering  The Ohio State University

Warning: Academic Misconduct

 GitHub is a very popular service
 But only public repo's are free
 Edu discount gives free private repo's
 3901 has an account ("organization") for

private repo's (see class web site)
 Bitbucket has free private repo's, for

small teams (< 5 collaborators)
 Public repo's containing coursework

can create academic misconduct issues
 Problems for poster
 Problems for plagiarist

Computer Science and Engineering  The Ohio State University

Mercurial (hg): Another DVCS

 Slightly simpler mental model
 Some differences in terminology
 git fetch/pull ~= hg pull/fetch
 git checkout ~= hg update

 Some (minor) differences in features
 No rebasing (only merging)
 No octopus merge (#parents <= 2)

 But key ideas are identical
 Repository = working directory + store
 Send/Receive changes between stores

Computer Science and Engineering  The Ohio State University

Summary

 Workflow
 Fetch/push frequency
 Respect team conventions for how/when

to use different branches
 Central repo is a shared resource
 Contains common (source) code
 Normalize line endings and formats

 Advanced techniques
 Stash, reset, rebase

 Advice
 Learn by using the command line
 Beware academic misconduct

