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Basic Workflow: Overview

Comp

Configure git (everyone)
Create central repo (1 person)
Create local repo (everyone)

. As you work (everyone):
B Commit locally

B Fetch/merge as appropriate
B Push to share
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Step 1: Configure Git
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Each team member, in their own VM

B Set identity for authoring commits

$ git config --global user.name "Brutus
Buckeye"

S git config --global user.email
bbl@osu.edu

B Optional: diff and merge tool (eg meld)
$ sudo apt install meld # to get tool

$ git config --global merge.tool meld
S git config --global diff.tool meld

# example use:
$ git difftool e9d36



Step 2: Initialize Central Rep
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One person, once per project:

Hosting services (GitHub, BitBucket...)
use a web interface for this step

Or, could use stdlinux instead:

B Create central repository in group's
project directory (/project/c3901aa03)

$ cd /project/c3901laal3
$ mkdir rep.git # ordinary directory

B Initialize central repository as bare and
shared within the group

$ git init --bare --shared rep.git




Step 3: Create Local Repository

Each team member, once, in their VM

B Create local repository by cloning the
central repository

S git clone
ssh://brut@stdlinux.cse.ohio-
state.edu//project/c3901aal03/projl.git
mywork

B You will be prompted for your (stdlinux)
password (every time you fetch and push
too)

B To avoid having to enter your password
each time, create an ssh key-pair (see VM
setup instructions)




Step 4: Local Development
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Each team member repeats:

B Edit and commit (to local repository) often
$ git status/add/rm/commit

m Pull others' work when can benefit

$ git fetch origin # bring in changes
$ git log/checkout # examine new work
$ git merge, commit # merge work

B Push to central repository when confident
$ git push origin master # share



Professional Git
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Commit/branch conventions

Deciding what goes in, and what stays
out of the store

B Share all the things that should be shared
B Only share things that should be shared

Normalizing contents of the store
B Windows vs linux line endings




Commit/Branch Conventions
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[eam strategy for managing the
structure of the DAG (ie the store)

Examples:

B “Master is always deployable”

O All work is done on other branches, merged
with master only when result compiles

B “Feature branches”, “developer branches”

O Each feature developed on its own branch vs.
each developer works on their own branch

B “Favor rebase over merge”
O Always append to latest origin/branch




Example: Branch-Based Dev
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release

feature
develop branches hotfixes master

branches

Time

Severe bug
fixed for
production:
hotfix 0.2

Incorporate
bugfix in
develop
\O Tag
0.2
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Major
feature for
next release

Feature
for future
release

release
branch for

From this point on,
“next release”
means the release
after 1.0
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merged back
into develop




Example: Trunk-Based Dev
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What Goes Into Central Repo'?

Computer Sci ing @ The Ohio State University

O Avoid developer-specific environment settlngs
B Hard-coded file/direcotry paths from local machine
B Passwords
B Better: Use variables (eg $OSU_CSE_LIB) instead
O Avoid IDE-specific files (.settings)

B But OK to keep . prcgfect and .classpath in repo so it is
easier to get started by cloning

O Avoid living binaries (docx, pdf)

B Meaningless diffs
O Avoid generated files

B Javadoc HTML, .class, .jar, compiled files
O Agree on code formatting

B Auto-format is good, but only if everyone uses the
same format settlngs|

B Spaces vs tabs, brace position, etc



Ignoring Files from Working Tree

O

O
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Use a .gitignore file in root of project
B Committed as part of the project
B Consistent policy for everyone on team

Example:

# see github:gitignore/Ruby, /Global/
# Ignore auto-saved emacs files

* A~

# Ignore bundler config

/ .bundle

# Ignore the default SQLite database
/db/* .sqlite3

# Ignore all logfiles and tempfiles
/log/*

/tmp/*



Problem: End-of-line Confusion
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Differences between OS's in how a “hew
line” is encoded in a text file

B Windows: CR + LF (ie "\r\n", OxOD 0x0A)
B Unix/Mac: LF (ie "\n", 0x0A)
Demo: hexdump

Difference is hidden by most editors

B An IDE might recognize either when opening
a file, but convert all to \r\n when saving

But difference matters to git when

comparing files!

Problem: OS differences within team

B Changing 1 line causes every line to be
modified

B Flood of spurious changes masks the real edit




Solution: Normalization

Git convention: use \n in the store
B Working tree uses OS's native eol

B Convert when moving data between the
two (e.g., commit, checkout)

Note: Applies to text files only

B A “binary” file, like a jpg, might contain
these bytes (Ox0OD and/or 0x0A), but they
should not be converted

How does git know whether a file is
text or binary?

B Heuristics: auto-detect based on contents
B Configuration: filename matches a pattern




Normalization With .gitattributes
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Use a .gitattributes file in root of project

B Committed as part of the project

B Consistent policy for everyone on team

Example:

# Auto detect text files and perform LF normalization
* text=auto

.classpath text
.project text

# These files are text, should be normalized (crlf=>1f)
* . Jjava text

* .md text

* . txt text

*

*

# These files are binary, should be left untouched
*.class binary
*.jar binary



Ninja Git
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[emporary storage with stash

Undoing mistakes in working tree with
reset

Undoing mistakes in store with amend
DAG surgery with rebase
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Advanced: Temporary Storage

rsity

Say you have uncommitted work and

want to look at a different branch

Checkout won't work!
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Stash: Push Work Onto A Stack
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$ git stash # repo now clean
$ git checkout ..etc.. # feel free to poke around

| HEAD II
[master] [stash } ™
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Stash: Pop Work Off the Stack
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$ git stash pop # restores state of wt (and store)

# equivalent to:
$ git stash apply # restore wt and index
$ git stash drop # restore store

‘HEADl
master

™

uncommited
changes

S




Advanced: Undoing Mistakes
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Say you want to throw away all your
uncommited work

B e "Roll back" to last commited state

Checkout won't work! £
| HEAD | II
[master] R\\
uncommited
o 5 y P p\ changes
a € b |e C |€ d
\_ J 0




Reset: Discarding Changes
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$ git reset --hard
$ git clean --dry-run # list untracked files

$ git clean --force # remove untracked files

‘HEADl
master

(5]

replaced to be
p\ same as HEAD

nd

!_“



Reset: Discarding Commits
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$ git reset --hard HEAD~1
# no need to git clean, since wt was already clean

HEAD moved _
(and attached branch) ™. -
HEAD) e |
K
[maint] [master} AN
replaced to be

r \ same as
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The Power to Change History
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Changing the store lets us:
B Fix mistakes in recent commits

B Clean up messy DAGs to make history
look more linear

Rule: Never change shared history

B Once something has been pushed to a
remote repo (eg origin), do not change
that part of the DAG

B So: A push is really a commitment!



Advanced: Rewriting History
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Problem 1: Wrong or incomplete
commit

| HEAD \
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Advanced: Rewriting History
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Problem 1: Wrong or incomplete
commit
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Advanced: Rewriting History
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Problem 1: Wrong or incomplete
commit

B Oops! That wasn't quite right...

(o)
| HEAD
[master] R‘\
uncommited
. 2 y N\ changes
a ¢ b < C
N Pl

ind



Advanced: Rewriting
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Problem 1: Wrong or incomplete

commit
B Oops! That wasn't quite right...
o
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clean
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Advanced: Rewriting History

commit
B Oops! That wasn't quite right...

Problem 1: Wrong or incomplete
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Advanced: Rewriting History
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Problem 1: Wrong or incomplete
commit

Result: Lots of tiny “fix it”, “oops”,
“retry” commits .
HEAD
[master] R\
clean
ar 5 Y o) € )
a |€ b e cC € d < e
" e

ind



Commit --amend: Tip Repair
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Alternative: Change most recent
commit(s)

(o)
| HEAD
[master] R‘\
uncommited
o P y N\ changes
a ¢ b < C
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ind



Commit --amend: Tip Repair
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$ git add --all .
$ git commit —--amend --no-edit
# no-edit keeps the same commit message

o
‘HEAD II
[ master ] k\\
clean
ar B 5 )
a € b e f
- 0 )2
! ind

i Brand new commit,
different hash



Advanced: Rewriting
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Problem 2: As an independent branch
is being developed, main also evolves
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Advanced: Rewriting
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Problem 2: As an independent branch
is being developed, main also evolves
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Advanced: Rewriting
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Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main

with (incomplete) branch
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Advanced: Rewriting

with (incomplete) branch

HEAD

[menu] [master]
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Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main
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Advanced: Rewriting History
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Problem 2: As an independent branch
is being developed, main also evolves

Result: Need periodic merges of main
with (incomplete) branch
‘HEAD\

[master] [menu]
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Rebase: DAG Surger
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Alternative: Move commits to a
different part of the DAG

[master} menu

0

f

K

g

a € b C




Rebase: DAG Surgery

$ git rebase master
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# merging master into menu is now a fast-forward

[master}

0 K

~N




Git Clients and Hosting Services

Recommended client: Command line!

Alternative: Various GUIs

B Linux: gitg, git-gui, git-cola, giggle
B Win/mac GUI: SourceTree

B IDEs: RubyMine

Lots of sites for hosting your repos:

B GitHub, Bitbucket, SourceForge, Google
Code,...

These cloud services provide
B Storage space

B Pretty web interface

B [ssues, bug tracking

B Workflow with "forks" and "pull requests" to
promote contributions from others




Clarity
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Warning: Academic Misconduct
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GitHub is a very popular service
B But only public repo's are free
B Edu discount gives free private repo's

B 3901 has an account ("organization") for
private repo's (see class web site)

Bitbucket has free private repo's, for
small teams (< 5 collaborators)

Public repo's containing coursework
can create academic misconduct issues
B Problems for poster

B Problems for plagiarist




Mercurial (hg): Another DVCS
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Slightly simpler mental model

Some differences in terminology

B git fetch/pull ~= hg pull/fetch

B git checkout ~= hg update

Some (minor) differences in features
B No rebasing (only merging)

B No octopus merge (#parents <= 2)
But key ideas are identical

B Repository = working directory + store
B Send/Receive changes between stores




Summary

Workflow

B Fetch/push frequency

B Respect team conventions for how/when
to use different branches

Central repo is a shared resource
B Contains common (source) code

B Normalize line endings and formats
Advanced techniques

B Stash, reset, rebase

Advice

B Learn by using the command line
B Beware academic misconduct




