
Computer Science and Engineering College of Engineering The Ohio State University

Git:
Miscellaneous Topics

Lecture 4

Computer Science and Engineering The Ohio State University

Basic Workflow: Overview

1. Configure git (everyone)
2. Create central repo (1 person)
3. Create local repo (everyone)
4. As you work (everyone):
 Commit locally
 Fetch/merge as appropriate
 Push to share

Computer Science and Engineering The Ohio State University

Step 1: Configure Git

 Each team member, in their own VM
 Set identity for authoring commits
$ git config --global user.name "Brutus
Buckeye"

$ git config --global user.email
bb@osu.edu

 Optional: diff and merge tool (eg meld)
$ sudo apt install meld # to get tool

$ git config --global merge.tool meld

$ git config --global diff.tool meld

example use:

$ git difftool e9d36

Computer Science and Engineering The Ohio State University

Step 2: Initialize Central Rep

 One person, once per project:
 Hosting services (GitHub, BitBucket…)

use a web interface for this step
 Or, could use stdlinux instead:
 Create central repository in group's

project directory (/project/c3901aa03)
$ cd /project/c3901aa03
$ mkdir rep.git # ordinary directory
 Initialize central repository as bare and

shared within the group
$ git init --bare --shared rep.git

Computer Science and Engineering The Ohio State University

Step 3: Create Local Repository

 Each team member, once, in their VM
 Create local repository by cloning the

central repository
$ git clone
ssh://brut@stdlinux.cse.ohio-
state.edu//project/c3901aa03/proj1.git
mywork
 You will be prompted for your (stdlinux)

password (every time you fetch and push
too)

 To avoid having to enter your password
each time, create an ssh key-pair (see VM
setup instructions)

Computer Science and Engineering The Ohio State University

Step 4: Local Development

 Each team member repeats:
 Edit and commit (to local repository) often
$ git status/add/rm/commit

 Pull others' work when can benefit
$ git fetch origin # bring in changes

$ git log/checkout # examine new work

$ git merge, commit # merge work

 Push to central repository when confident
$ git push origin master # share

Computer Science and Engineering The Ohio State University

Professional Git

 Commit/branch conventions
 Deciding what goes in, and what stays

out of the store
 Share all the things that should be shared
 Only share things that should be shared

 Normalizing contents of the store
 Windows vs linux line endings

Computer Science and Engineering The Ohio State University

Commit/Branch Conventions

 Team strategy for managing the
structure of the DAG (ie the store)

 Examples:
 “Master is always deployable”

 All work is done on other branches, merged
with master only when result compiles

 “Feature branches”, “developer branches”
 Each feature developed on its own branch vs.

each developer works on their own branch

 “Favor rebase over merge”
 Always append to latest origin/branch

Computer Science and Engineering The Ohio State University

Example: Branch-Based Dev

Computer Science and Engineering The Ohio State University

Example: Trunk-Based Dev

Computer Science and Engineering The Ohio State University

What Goes Into Central Repo?
 Avoid developer-specific environment settings

 Hard-coded file/direcotry paths from local machine
 Passwords
 Better: Use variables (eg $OSU_CSE_LIB) instead

 Avoid IDE-specific files (.settings)
 But OK to keep .project and .classpath in repo so it is

easier to get started by cloning
 Avoid living binaries (docx, pdf)

 Meaningless diffs
 Avoid generated files

 Javadoc HTML, .class, .jar, compiled files
 Agree on code formatting

 Auto-format is good, but only if everyone uses the
same format settings!

 Spaces vs tabs, brace position, etc

Computer Science and Engineering The Ohio State University

Ignoring Files from Working Tree

 Use a .gitignore file in root of project
 Committed as part of the project
 Consistent policy for everyone on team

 Example:
see github:gitignore/Ruby, /Global/
Ignore auto-saved emacs files
*~
Ignore bundler config
/.bundle
Ignore the default SQLite database
/db/*.sqlite3
Ignore all logfiles and tempfiles
/log/*
/tmp/*

Computer Science and Engineering The Ohio State University

Problem: End-of-line Confusion

 Differences between OS's in how a “new
line” is encoded in a text file
 Windows: CR + LF (ie "\r\n", 0x0D 0x0A)
 Unix/Mac: LF (ie "\n", 0x0A)

 Demo: hexdump
 Difference is hidden by most editors
 An IDE might recognize either when opening

a file, but convert all to \r\n when saving
 But difference matters to git when

comparing files!
 Problem: OS differences within team
 Changing 1 line causes every line to be

modified
 Flood of spurious changes masks the real edit

Computer Science and Engineering The Ohio State University

Solution: Normalization

 Git convention: use \n in the store
 Working tree uses OS's native eol
 Convert when moving data between the

two (e.g., commit, checkout)
 Note: Applies to text files only
 A “binary” file, like a jpg, might contain

these bytes (0x0D and/or 0x0A), but they
should not be converted

 How does git know whether a file is
text or binary?
 Heuristics: auto-detect based on contents
 Configuration: filename matches a pattern

Computer Science and Engineering The Ohio State University

Normalization With .gitattributes
 Use a .gitattributes file in root of project

 Committed as part of the project
 Consistent policy for everyone on team

 Example:
Auto detect text files and perform LF normalization
* text=auto

These files are text, should be normalized (crlf=>lf)
*.java text
*.md text
*.txt text
*.classpath text
*.project text

These files are binary, should be left untouched
*.class binary
*.jar binary

Computer Science and Engineering The Ohio State University

Ninja Git

 Temporary storage with stash
 Undoing mistakes in working tree with

reset
 Undoing mistakes in store with amend
 DAG surgery with rebase

Computer Science and Engineering The Ohio State University

Advanced: Temporary Storage

 Say you have uncommitted work and
want to look at a different branch

 Checkout won't work!

a b dc

wt

master

HEAD

uncommited
changes

maint

ind

Computer Science and Engineering The Ohio State University

a b dc e

maint master

HEAD

Stash: Push Work Onto A Stack

wt

clean

ind

$ git stash # repo now clean
$ git checkout …etc… # feel free to poke around

stash

Computer Science and Engineering The Ohio State University

Stash: Pop Work Off the Stack

a b dc

wt

master

HEAD

uncommited
changes

maint

ind

$ git stash pop # restores state of wt (and store)

equivalent to:
$ git stash apply # restore wt and index
$ git stash drop # restore store

Computer Science and Engineering The Ohio State University

Advanced: Undoing Mistakes

 Say you want to throw away all your
uncommited work
 ie "Roll back" to last commited state

 Checkout won't work!

a b dc

wt

master

HEAD

uncommited
changes

maint

ind

Computer Science and Engineering The Ohio State University

Reset: Discarding Changes

a b dc

master

HEAD

maint

$ git reset --hard
$ git clean –-dry-run # list untracked files
$ git clean –-force # remove untracked files

ind

replaced to be
same as HEAD

wt

Computer Science and Engineering The Ohio State University

Reset: Discarding Commits

a b dc

master

HEAD

maint

$ git reset --hard HEAD~1
no need to git clean, since wt was already clean

ind

replaced to be
same as
HEAD~1

wt

HEAD moved
(and attached branch)

now unreachable

Computer Science and Engineering The Ohio State University

The Power to Change History

 Changing the store lets us:
 Fix mistakes in recent commits
 Clean up messy DAGs to make history

look more linear

 Rule: Never change shared history
 Once something has been pushed to a

remote repo (eg origin), do not change
that part of the DAG

 So: A push is really a commitment!

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

a b

master

HEAD

ind

wt

uncommited
changes

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

a b c

master

HEAD wt

clean

ind

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit
 Oops! That wasn’t quite right…

a b c

master

HEAD

ind

wt

uncommited
changes

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit
 Oops! That wasn’t quite right…

a b dc

master

HEAD wt

clean

ind

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit
 Oops! That wasn’t quite right…

a b dc e

master

HEAD wt

clean

ind

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 1: Wrong or incomplete
commit

 Result: Lots of tiny “fix it”, “oops”,
“retry” commits

a b dc e

master

HEAD wt

clean

ind

Computer Science and Engineering The Ohio State University

Commit --amend: Tip Repair

 Alternative: Change most recent
commit(s)

a b c

master

HEAD

ind

wt

uncommited
changes

Computer Science and Engineering The Ohio State University

Commit --amend: Tip Repair

$ git add –-all .
$ git commit –-amend –-no-edit
no-edit keeps the same commit message

a b

wt

clean

ind

f

master

HEAD

Brand new commit,
different hash

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

a b

HEAD

menumaster

f

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

a b

HEAD

menumaster

f

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b c

menu

f

HEAD

master

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b dc e

HEAD

master

f g

menu

Computer Science and Engineering The Ohio State University

Advanced: Rewriting History

 Problem 2: As an independent branch
is being developed, main also evolves

 Result: Need periodic merges of main
with (incomplete) branch

a b dc e

HEAD

master

f hg

menu

Computer Science and Engineering The Ohio State University

Rebase: DAG Surgery

 Alternative: Move commits to a
different part of the DAG

a b dc

f g

menu

HEAD

master

Computer Science and Engineering The Ohio State University

Rebase: DAG Surgery

a b dc

f g

menu

HEAD

master

$ git rebase master
merging master into menu is now a fast-forward

Computer Science and Engineering The Ohio State University

Git Clients and Hosting Services

 Recommended client: Command line!
 Alternative: Various GUIs
 Linux: gitg, git-gui, git-cola, giggle
 Win/mac GUI: SourceTree
 IDEs: RubyMine

 Lots of sites for hosting your repos:
 GitHub, Bitbucket, SourceForge, Google

Code,…
 These cloud services provide
 Storage space
 Pretty web interface
 Issues, bug tracking
 Workflow with "forks" and "pull requests" to

promote contributions from others

Computer Science and Engineering The Ohio State University

Clarity

git != GitHub

Computer Science and Engineering The Ohio State University

Warning: Academic Misconduct

 GitHub is a very popular service
 But only public repo's are free
 Edu discount gives free private repo's
 3901 has an account ("organization") for

private repo's (see class web site)
 Bitbucket has free private repo's, for

small teams (< 5 collaborators)
 Public repo's containing coursework

can create academic misconduct issues
 Problems for poster
 Problems for plagiarist

Computer Science and Engineering The Ohio State University

Mercurial (hg): Another DVCS

 Slightly simpler mental model
 Some differences in terminology
 git fetch/pull ~= hg pull/fetch
 git checkout ~= hg update

 Some (minor) differences in features
 No rebasing (only merging)
 No octopus merge (#parents <= 2)

 But key ideas are identical
 Repository = working directory + store
 Send/Receive changes between stores

Computer Science and Engineering The Ohio State University

Summary

 Workflow
 Fetch/push frequency
 Respect team conventions for how/when

to use different branches
 Central repo is a shared resource
 Contains common (source) code
 Normalize line endings and formats

 Advanced techniques
 Stash, reset, rebase

 Advice
 Learn by using the command line
 Beware academic misconduct

