
Computer Science and Engineering College of Engineering The Ohio State University

Git:
Distributed Version Control

Lecture 3

Computer Science and Engineering The Ohio State University

Demo

 Prep: Empty (but initialized) repo
 Linear development:
 Create, edit, rename, ls -la files
 Git: add, status, commit, log

 Checkout (time travel, detach HEAD)
 Branch (re-attach HEAD)
 More commits, see split in history
 Merge
 No conflict
 Fast-forward

Computer Science and Engineering The Ohio State University

What Does "D" Stand For?

 Distributed version control
 Multiple people, distributed across

network

 Each person has their own repository!
 Everyone has their own store (history)!
 Big difference with older VCS (eg SVN)

 Units of data movement: changeset
 Communication between teammates is to

bring stores in sync
 Basic operators: fetch and push

Computer Science and Engineering The Ohio State University

Sarah's Repository

a b dc e

Sarah

HEAD

master

wt

Computer Science and Engineering The Ohio State University

And Matt's Repository

a b dc e

Sarah

HEAD

master

a b f

Matt

g

HEAD

master

wt

wt

Computer Science and Engineering The Ohio State University

Some Shared History

a b dc e

Sarah

HEAD

master

a b f

Matt

g

HEAD

master

wt

wt

Computer Science and Engineering The Ohio State University

Fetch: Remote Store Local

a b dc e

gf

Sarah

HEAD

master

working
tree
unaffected!

wt

remote
branch

new changesets
added to store

mt/master

sarah$ git fetch mt

Computer Science and Engineering The Ohio State University

Remote Repository Unchanged

a b f

Matt

g

HEAD

master

Computer Science and Engineering The Ohio State University

Workflow: Merge After Fetch

a b dc e

gf

h

mt/master

HEAD

master
Sarah

sarah$ git merge mt/master

Computer Science and Engineering The Ohio State University

Remote Repository Unchanged

a b f

Matt

g

HEAD

master

Computer Science and Engineering The Ohio State University

View of DAG with All Branches

$ git log --oneline --graph --decorate --all

* 1618849 (HEAD-> master, origin/master) clean up css
* d579fa2 (alert) merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 (origin/alert) add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit

Computer Science and Engineering The Ohio State University

Your Turn

 Show the state of Matt's repository
after each of the following steps
 Fetch (from Sarah)
 Merge

Computer Science and Engineering The Ohio State University

Sarah and Matt's Repositories

a b dc e

gf

Sarah

h

mt/master

HEAD

master

a b f

Matt

g

HEAD

master

Computer Science and Engineering The Ohio State University

Some Shared History

a b dc e

gf

Sarah

h

mt/master

HEAD

master

a b f

Matt

g

HEAD

master

Computer Science and Engineering The Ohio State University

Your Turn: Fetch

matt$ git fetch sr

Computer Science and Engineering The Ohio State University

Your Turn: Merge

matt$ git merge sr/master

Computer Science and Engineering The Ohio State University

Pull: Fetch then Merge

 A "pull" combines both fetch & merge
matt$ git pull sr

 Advice: Prefer explicit fetch, merge
 After fetch, examine new work

$ git log --all #see commit messages

$ git checkout #see work

$ git diff #compare

 Then merge
 Easier to adopt more complex workflows

(e.g., rebasing instead of merging)

Computer Science and Engineering The Ohio State University

Push: Local Store Remote

 Push sends local commits to remote store
 Usually push one branch (at a time)

sarah$ git push mt fix
 Advances Matt's fix branch
 Advances Sarah's mt/fix remote branch

 Requires:
1. Matt's fix branch must not be his HEAD
2. Matt's fix branch must be ancestor of Sarah's

 Common practices:
1. Only push to bare repositories (bare means

no working tree, ie no HEAD)
2. Get remote store's branch into local DAG (ie

fetch, merge, commit) before pushing

Computer Science and Engineering The Ohio State University

Remote's Branch is Ancestor

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

HEAD

master

Computer Science and Engineering The Ohio State University

Push: Local Store Remote

a b dc e

Sarah

HEAD

fix

a b c

Matt

d

fix

mt/fix

wt

HEAD

master

sarah$ git push mt fix

Computer Science and Engineering The Ohio State University

Push: After

a b dc e

Sarah

sarah$ git push mt fix

ea b c

Matt

d

working
tree
unaffected!

wt

HEAD

fix mt/fix

fix

HEAD

master

Computer Science and Engineering The Ohio State University

Commit/Checkout vs Push/Fetch

Computer Science and Engineering The Ohio State University

Common Topology: Star

 n-person team has n+1 repositories
 1 shared central repository (bare!)
 1 local repository / developer

 Each developer clones central
repository
 Cloning creates a remote called "origin"
 Default source/destination for fetch/push

 Variations for central repository:
 Everyone can read and write (ie push)
 Everyone can read, but only 1 person can

write (responsible for pulling and merging)

Computer Science and Engineering The Ohio State University

Common Topology: Star

Source: http://nvie.com/posts/a-successful-git-branching-model/

Bare repository
(no working tree)

Computer Science and Engineering The Ohio State University

Summary

 Push/fetch to share your store with
remote repositories
 Neither working tree is affected

 Branches in history are easy to form
 Committing when HEAD is not a leaf
 Fetching work based on earlier commit

 Team coordination
 One single, central repo
 Every developer pushes/fetches from their

(local) repo to this central (remote) repo

