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Git:
(Distributed) Version Control

Lecture 2
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The Need for Version Control

 Track evolution of a software artifact
 Development is often non-linear
 Older versions need to be supported
 Newer versions need to be developed

 Development is non-monotonic
 May need to undo some work, go back to an 

older version, or track down when a mistake 
was introduced

 Facilitate team-based development
 Multiple developers working on a common 

code base
 How can project be edited simultaneously? 
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Key Idea: A Repository

 Repository= working tree + store + index 
 Warning: "Repo" often used (incorrectly) to 

mean just the store or just the working tree
 Working tree = project itself
 Ordinary directory with files & subdirectories

 Store = history of project
 Hidden directory: don’t touch!

 Index = virtual snapshot
 Gateway for moving changes in the working 

tree into the store (aka “stage”, “cache”)
 History = DAG of commits
 Each commit represents a complete snapshot 

of the entire project
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File Structure of a Repository
~/mashup/
├── css/
│ ├── buckeye-alert-resp.css
│ └── demo.css
├── demo-js.html
├── Gemfile
├── Gemfile.lock
├── .git/
│ ├── HEAD
│ ├── index
│ └── ...etc...
├── .gitignore
├── Rakefile
├── README.md
└── ...etc...
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Conceptual Structure

working tree
~/mashup/

store
~/mashup/.git/

wt

index
~/mashup/.git/index

ind
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A History of Commits

a b dc

working tree
~/mashup/

store
~/mashup/.git/

d's parent
is c

wt

commit b

revision β

ߙ ߚ ߛ ߜ

index
~/mashup/.git/index

ind
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History is a DAG

 Every commit (except the first) has 1 
or more parents

a b gd

store

i

kf j

e

c

h

e has 1
parent

i has 2
parents

Initial commit
has no parents
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Example View of DAG
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Example View of DAG

$ git log --oneline --graph

* 1618849 clean up css
*   d579fa2 merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit
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Commit

 Each commit is identified by a hash
 160 bits (i.e., 40 hex digits)
 Practically guaranteed to be unique
 Can use short prefix of hash if unique

$ git show --name-only
16188493c252f6924baa17c9b84a4c1baaed438b
Author: Paul Sivilotti <user.pags@server.fake>
Date:   Mon Mar 31 15:30:50 2014 +0200

clean up css

source/stylesheets/_site.css
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History is a DAG

 A better picture would label each 
commit with its hash (prefix)

 But in these slides we abbreviate the 
hash id's as just: 'a', 'b', 'c'…

eca7 96c9 c0a2d1bf 850a

512a8f59 a21adf2f
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Nomenclature: Branch

 Branch: a pointer to a commit
 Different from "branch" in DAG's shape

a b gd

store

i

kf jc

maint master rankings
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Nomenclature: HEAD

 HEAD: a special reference, (usually) 
points to a branch

a b gd

store

i

kf jc

maint master rankings

HEAD
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Nomenclature: HEAD

 Useful to think of HEAD as being 
"attached" to a particular branch

a b gd

store

i

kf jc

maint master rankings

HEAD
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View of DAG with Branches

$ git log --oneline --graph --decorate

* 1618849 (HEAD -> master) clean up css
*   d579fa2 (alert) merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit
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A "Clean" Repository

a b dc

wtmaster

HEAD

maint

ߙ ߚ ߛ ߜ

ߜ

$ git status
On branch master
nothing to commit,
working directory clean

ind

δ

same
("wd clean")

same
("nothing
to commit")



17

Computer Science and Engineering   The Ohio State University

Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wtmaster

HEAD

now differs
from index

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

δ
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Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wtmaster

HEAD

now differs
from index

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

δ
$ git status
On branch master
Changes not staged for commit:

modified: css/demo.css 
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Add: Working Tree  Index

a b dc

wtmaster

HEAD

index = wt,
both differ
from HEAD

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

ࢿ

$ git add --all .
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Add: Working Tree  Index

a b dc

wtmaster

HEAD

index = wt,
both differ
from HEAD

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

ࢿ

$ git add --all .

$ git status
On branch master
Changes to be committed:

modified: css/demo.css 
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Commit: Index  Store

a b dc e

new commit
added to store

Store changed!
DAG extended

HEAD advanced
(with attached branch!)

maint

ߙ ߚ ߛ ߜ

parent is
old HEAD

master

HEAD

ߝ

wt

unaffected
(but now
clean)

ߝ

ind

ߝ

$ git commit
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The (New) State of Repository

a b dc e

maint

ߙ ߚ ߛ ߜ

master

HEAD

ߝ

wt

ߝ

ind

ߝ
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Creating a New Branch

a b dc e

master

HEAD

maint

ߙߝ ߚ ߛ ߜ

fix

wt

ߝ

ind

ߝ

$ git branch fix
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Checkout: Changing Branch

a b dc e

master

HEAD

maint

ߙߝ ߚ ߛ ߜ

fix

HEAD
moved

wt

ߝ

ind

ߝ

$ git checkout fix

Store unaffected (apart from HEAD)
Same DAG, branches
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Checkout: Changing Branch

a b dc e

HEAD

maint

HEAD moved

ߙߝ ߚ ߛ ߜ

 Advice: checkout only when wt is clean

master

fix

now same
as maint

ind

ࢼ

wt

ࢼ

$ git checkout maint
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Edit Files in Working Tree

a b dc e

HEAD

maint

ߙߝ ߚ ߛ ߜ

master

fix

now differs
from index

ind

ߚ

wt

ࣂ

 Add files, remove files, edit files…
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Add & Commit: Update Store

a b dc e

HEAD

maint master

f

ߙߝ ߚ ߛ ߜ

ߠ

$ git add --all .
$ git commit

ind

wt

ߠ

ߠ

fix
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Group Formation

 Groups of 3 (or 4)
 Exchange contact information
 Each person choose a primary technical 

area:
 HTML/CSS
 JavaScript
 Ruby

 Group constraints on choices:
 Each technology must be represented
 No more than 2 people per technology

 Choose a secondary interest as well
 “Don’t Care” is fine (as primary or secondary)
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Merge: Bringing History together

 Bring work from another branch into 
current branch
 Implemented features, fixed bugs, etc.

 Updates current branch, not other

HEAD

othercurrent

HEAD

other current
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Merge – Case 1: Ancestor

 HEAD is an ancestor of other branch

a b dc e

ߙߝ ߚ ߛ ߜ

HEAD

maint master

wt

ߚ
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Fast-Forward Merge

a b dc e

ߙߝ ߚ ߛ ߜ

HEAD

maint

wt

$ git merge master

master

ࢿ
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Merge – Case 2: No Conflicts

a b dc e

HEAD

maint master

f

ߙߝ ߚ ߛ ߜ

ߠ

wt

ߝ



33

Computer Science and Engineering   The Ohio State University

Merge Automatically Commits

a b dc e

HEAD

maint master

f

g

$ git merge maint

ߙ ߚ ߛ ߜ

ߠ

ߤ

ߝ

wt

ࣆ
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Merge – Case 3: Conflicts Exist

a b dc e

HEAD

wt

master

$ git merge maint

ind
files that could
be merged
automatically

files with
conflicts
marked

maint

f

ߙߝ ߚ ߛ ߜ

ߠ

′ߝ ′′ߝ
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Merge: Resolve Conflicts

a b dc e

HEAD

wt

master

$ emacs somefile

ind
files with
conflicts
resolved

maint

f

ߙߝ ߚ ߛ ߜ

ߠ

ࣆ′′ߝ



36

Computer Science and Engineering   The Ohio State University

Merge with Conflicts: Add

a b dc e

HEAD

wt

master

$ git add somefile

ind

maint

f

ߙߝ ߚ ߛ ߜ

ߠ

ࣆ ࣆ
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Merge with Conflicts: Commit

a b dc e

HEAD

maint master

f

g

$ git commit

ߙ ߚ ߛ ߜ

ߠ

ߤ

ߝ

wt ind

ߤ ߤ
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Summary

 Repository = working tree + store
 Store contains history
 History is a DAG of commits
 References, tags, and HEAD

 Commit/checkout are local operations
 Former changes store, latter working tree

 Merge
 Directional (merge A “into” B)


