
1

Computer Science and Engineering College of Engineering The Ohio State University

Git:
(Distributed) Version Control

Lecture 2

2

Computer Science and Engineering The Ohio State University

The Need for Version Control

 Track evolution of a software artifact
 Development is often non-linear
 Older versions need to be supported
 Newer versions need to be developed

 Development is non-monotonic
 May need to undo some work, go back to an

older version, or track down when a mistake
was introduced

 Facilitate team-based development
 Multiple developers working on a common

code base
 How can project be edited simultaneously?

3

Computer Science and Engineering The Ohio State University

Key Idea: A Repository

 Repository= working tree + store + index
 Warning: "Repo" often used (incorrectly) to

mean just the store or just the working tree
 Working tree = project itself
 Ordinary directory with files & subdirectories

 Store = history of project
 Hidden directory: don’t touch!

 Index = virtual snapshot
 Gateway for moving changes in the working

tree into the store (aka “stage”, “cache”)
 History = DAG of commits
 Each commit represents a complete snapshot

of the entire project

4

Computer Science and Engineering The Ohio State University

File Structure of a Repository
~/mashup/
├── css/
│ ├── buckeye-alert-resp.css
│ └── demo.css
├── demo-js.html
├── Gemfile
├── Gemfile.lock
├── .git/
│ ├── HEAD
│ ├── index
│ └── ...etc...
├── .gitignore
├── Rakefile
├── README.md
└── ...etc...

5

Computer Science and Engineering The Ohio State University

Conceptual Structure

working tree
~/mashup/

store
~/mashup/.git/

wt

index
~/mashup/.git/index

ind

6

Computer Science and Engineering The Ohio State University

A History of Commits

a b dc

working tree
~/mashup/

store
~/mashup/.git/

d's parent
is c

wt

commit b

revision β

ߙ ߚ ߛ ߜ

index
~/mashup/.git/index

ind

7

Computer Science and Engineering The Ohio State University

History is a DAG

 Every commit (except the first) has 1
or more parents

a b gd

store

i

kf j

e

c

h

e has 1
parent

i has 2
parents

Initial commit
has no parents

8

Computer Science and Engineering The Ohio State University

Example View of DAG

9

Computer Science and Engineering The Ohio State University

Example View of DAG

$ git log --oneline --graph

* 1618849 clean up css
* d579fa2 merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit

10

Computer Science and Engineering The Ohio State University

Commit

 Each commit is identified by a hash
 160 bits (i.e., 40 hex digits)
 Practically guaranteed to be unique
 Can use short prefix of hash if unique

$ git show --name-only
16188493c252f6924baa17c9b84a4c1baaed438b
Author: Paul Sivilotti <user.pags@server.fake>
Date: Mon Mar 31 15:30:50 2014 +0200

clean up css

source/stylesheets/_site.css

11

Computer Science and Engineering The Ohio State University

History is a DAG

 A better picture would label each
commit with its hash (prefix)

 But in these slides we abbreviate the
hash id's as just: 'a', 'b', 'c'…

eca7 96c9 c0a2d1bf 850a

512a8f59 a21adf2f

12

Computer Science and Engineering The Ohio State University

Nomenclature: Branch

 Branch: a pointer to a commit
 Different from "branch" in DAG's shape

a b gd

store

i

kf jc

maint master rankings

13

Computer Science and Engineering The Ohio State University

Nomenclature: HEAD

 HEAD: a special reference, (usually)
points to a branch

a b gd

store

i

kf jc

maint master rankings

HEAD

14

Computer Science and Engineering The Ohio State University

Nomenclature: HEAD

 Useful to think of HEAD as being
"attached" to a particular branch

a b gd

store

i

kf jc

maint master rankings

HEAD

15

Computer Science and Engineering The Ohio State University

View of DAG with Branches

$ git log --oneline --graph --decorate

* 1618849 (HEAD -> master) clean up css
* d579fa2 (alert) merge in improvements from master
|\
| * 0f10869 replace image-url helper in css
* | b595b10 add buckeye alert notes
* | a6e8eb3 add raw buckeye alert download
|/
* b4e201c wrap osu layout around content
* e9d3686 add Rakefile and refactor schedule loop
* 515aaa3 create README.md
* eb26605 initial commit

16

Computer Science and Engineering The Ohio State University

A "Clean" Repository

a b dc

wtmaster

HEAD

maint

ߙ ߚ ߛ ߜ

ߜ

$ git status
On branch master
nothing to commit,
working directory clean

ind

δ

same
("wd clean")

same
("nothing
to commit")

17

Computer Science and Engineering The Ohio State University

Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wtmaster

HEAD

now differs
from index

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

δ

18

Computer Science and Engineering The Ohio State University

Edit Files in Working Tree

 Add files, remove files, edit files…

a b dc

wtmaster

HEAD

now differs
from index

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

δ
$ git status
On branch master
Changes not staged for commit:

modified: css/demo.css

19

Computer Science and Engineering The Ohio State University

Add: Working Tree Index

a b dc

wtmaster

HEAD

index = wt,
both differ
from HEAD

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

ࢿ

$ git add --all .

20

Computer Science and Engineering The Ohio State University

Add: Working Tree Index

a b dc

wtmaster

HEAD

index = wt,
both differ
from HEAD

maint

ߙ ߚ ߛ ߜ

ࢿ

ind

ࢿ

$ git add --all .

$ git status
On branch master
Changes to be committed:

modified: css/demo.css

21

Computer Science and Engineering The Ohio State University

Commit: Index Store

a b dc e

new commit
added to store

Store changed!
DAG extended

HEAD advanced
(with attached branch!)

maint

ߙ ߚ ߛ ߜ

parent is
old HEAD

master

HEAD

ߝ

wt

unaffected
(but now
clean)

ߝ

ind

ߝ

$ git commit

22

Computer Science and Engineering The Ohio State University

The (New) State of Repository

a b dc e

maint

ߙ ߚ ߛ ߜ

master

HEAD

ߝ

wt

ߝ

ind

ߝ

23

Computer Science and Engineering The Ohio State University

Creating a New Branch

a b dc e

master

HEAD

maint

ߙߝ ߚ ߛ ߜ

fix

wt

ߝ

ind

ߝ

$ git branch fix

24

Computer Science and Engineering The Ohio State University

Checkout: Changing Branch

a b dc e

master

HEAD

maint

ߙߝ ߚ ߛ ߜ

fix

HEAD
moved

wt

ߝ

ind

ߝ

$ git checkout fix

Store unaffected (apart from HEAD)
Same DAG, branches

25

Computer Science and Engineering The Ohio State University

Checkout: Changing Branch

a b dc e

HEAD

maint

HEAD moved

ߙߝ ߚ ߛ ߜ

 Advice: checkout only when wt is clean

master

fix

now same
as maint

ind

ࢼ

wt

ࢼ

$ git checkout maint

26

Computer Science and Engineering The Ohio State University

Edit Files in Working Tree

a b dc e

HEAD

maint

ߙߝ ߚ ߛ ߜ

master

fix

now differs
from index

ind

ߚ

wt

ࣂ

 Add files, remove files, edit files…

27

Computer Science and Engineering The Ohio State University

Add & Commit: Update Store

a b dc e

HEAD

maint master

f

ߙߝ ߚ ߛ ߜ

ߠ

$ git add --all .
$ git commit

ind

wt

ߠ

ߠ

fix

28

Computer Science and Engineering The Ohio State University

Group Formation

 Groups of 3 (or 4)
 Exchange contact information
 Each person choose a primary technical

area:
 HTML/CSS
 JavaScript
 Ruby

 Group constraints on choices:
 Each technology must be represented
 No more than 2 people per technology

 Choose a secondary interest as well
 “Don’t Care” is fine (as primary or secondary)

29

Computer Science and Engineering The Ohio State University

Merge: Bringing History together

 Bring work from another branch into
current branch
 Implemented features, fixed bugs, etc.

 Updates current branch, not other

HEAD

othercurrent

HEAD

other current

30

Computer Science and Engineering The Ohio State University

Merge – Case 1: Ancestor

 HEAD is an ancestor of other branch

a b dc e

ߙߝ ߚ ߛ ߜ

HEAD

maint master

wt

ߚ

31

Computer Science and Engineering The Ohio State University

Fast-Forward Merge

a b dc e

ߙߝ ߚ ߛ ߜ

HEAD

maint

wt

$ git merge master

master

ࢿ

32

Computer Science and Engineering The Ohio State University

Merge – Case 2: No Conflicts

a b dc e

HEAD

maint master

f

ߙߝ ߚ ߛ ߜ

ߠ

wt

ߝ

33

Computer Science and Engineering The Ohio State University

Merge Automatically Commits

a b dc e

HEAD

maint master

f

g

$ git merge maint

ߙ ߚ ߛ ߜ

ߠ

ߤ

ߝ

wt

ࣆ

34

Computer Science and Engineering The Ohio State University

Merge – Case 3: Conflicts Exist

a b dc e

HEAD

wt

master

$ git merge maint

ind
files that could
be merged
automatically

files with
conflicts
marked

maint

f

ߙߝ ߚ ߛ ߜ

ߠ

′ߝ ′′ߝ

35

Computer Science and Engineering The Ohio State University

Merge: Resolve Conflicts

a b dc e

HEAD

wt

master

$ emacs somefile

ind
files with
conflicts
resolved

maint

f

ߙߝ ߚ ߛ ߜ

ߠ

ࣆ′′ߝ

36

Computer Science and Engineering The Ohio State University

Merge with Conflicts: Add

a b dc e

HEAD

wt

master

$ git add somefile

ind

maint

f

ߙߝ ߚ ߛ ߜ

ߠ

ࣆ ࣆ

37

Computer Science and Engineering The Ohio State University

Merge with Conflicts: Commit

a b dc e

HEAD

maint master

f

g

$ git commit

ߙ ߚ ߛ ߜ

ߠ

ߤ

ߝ

wt ind

ߤ ߤ

38

Computer Science and Engineering The Ohio State University

Summary

 Repository = working tree + store
 Store contains history
 History is a DAG of commits
 References, tags, and HEAD

 Commit/checkout are local operations
 Former changes store, latter working tree

 Merge
 Directional (merge A “into” B)

