
Computer Science and Engineering  College of Engineering  The Ohio State University

MVC:
Model View Controller

Lecture xx

Computer Science and Engineering  The Ohio State University

Motivation

 Basic parts of any application:
 Data being manipulated
 A user-interface through which this

manipulation occurs
 The data is logically independent from

how it is displayed to the user
 Display should be decoupled from content
 Single-point-of-control over change

 Example: grade distribution in class
 Could be displayed as a pie chart, or a bar

chart, or a cumulative fraction plot, or…

Computer Science and Engineering  The Ohio State University

Architecture: Desktop App

User Interface

Application

Data

Graphical events
(mouse moves,
button pushed)

Processing,
Calculating

Persistence,
Transactions,
Triggers

Computer Science and Engineering  The Ohio State University

Model-View-Controller Pattern

 Model
 The data (i.e. state)
 Methods for accessing and modifying state

 View
 Renders contents of model for user
 When model changes, view must be

updated
 Controller
 Translates user actions (i.e. interactions

with view) into operations on the model
 Example user actions: button clicks, menu

selections

Computer Science and Engineering  The Ohio State University

Basic Interactions in MVC

Model

Controller

View

Input

Output

“change data”

“change
display”

“user
action”

“new state”

Computer Science and Engineering  The Ohio State University

Implementing Basic MVC in Swing

 Mapping of classes to MVC parts
 View is a Swing widget (JFrame, JButton, etc.)
 Controller is an event handler

(ActionListener)
 Model is an ordinary Java class (or database)

 Alternative mapping
 View is a Swing widget and includes (inner)

class(es) as event handlers
 Controller is an ordinary Java class with

“business logic”, invoked by event handlers in
view

 Model is an ordinary Java class (or database)
 Difference: Where is the event listener?
 Regardless, model and view are completely

decoupled (linked only by controller)

Computer Science and Engineering  The Ohio State University

Wiring Parts Together

12

÷×+ -

void actionPerformed
(ActionEvent e) {

...
}

MultiplyListener

void multiplyBy (String arg) {
...

}

CalculatorState

CalculatorView

Computer Science and Engineering  The Ohio State University

Configuration: Connecting Parts
public class CalcView extends JFrame {
private JButton multiplyBtn = new JButton("X");

public void register(ActionListener x) {
multiplyBtn.addActionListener(x);

}
}

public class CalcController {
...
view.register(new ActionListener() {
public void actionPerformed(ActionEvent e) {
...

}
});

}

Computer Science and Engineering  The Ohio State University

Basic MVC in JavaScript

 Mapping of objects to MVC parts
 View is an HTML page
 Controller is event handler, an ordinary

JavaScript function
 Model is an ordinary JavaScript object

 Alternative mapping
 Separate event handler(s) from controller
 Controller is an ordinary object with “business

logic”, invoked by event handlers
 Model is an ordinary object

 Difference: Where is the event listener?
 Regardless, model and view are completely

decoupled (linked only by controller)

Computer Science and Engineering  The Ohio State University

Wiring Parts Together

12

÷×+ -

function multiplyListener (event) {
...

}

ActionListener.js

function multiplyBy (arg) {
...

}

CalculatorState.js

Calculator.html

Computer Science and Engineering  The Ohio State University

Registering an Event Handler

 Three techniques, ordered from:
 Oldest (most brittle, most universal) to
 Newest (most general, least standard)

1. Inline (link in HTML itself)
…

2. Direct (link in JavaScript)
var e = … //find source element in tree
e.onclick = foo;

3. Chained (In JavaScript, browser
differences)
var e = … //find source element in tree
e.addEventListener("click", foo, false);

Computer Science and Engineering  The Ohio State University

Basic MVC in Objective-C

Computer Science and Engineering  The Ohio State University

Implementing MVC in XCode

Computer Science and Engineering  The Ohio State University

Implementing MVC in XCode

Computer Science and Engineering  The Ohio State University

Basic Web App Skeleton: 3-Tier

User Interface

Application

Data

http HTML, CSS, Javascript

SQL

Computer Science and Engineering  The Ohio State University

MVC in a Web Application

 Model
 Database (table with rows)
 Classes that wrap database operations

(class with instances)
 View
 HTML (+ CSS, JavaScript) files rendered

by client's browser
 Skeleton files used by server to generate

these HTML files
 Controller
 Receives HTTP requests via web server
 Orchestrates activity (model and view)

Computer Science and Engineering  The Ohio State University

MVC with Rails

Computer Science and Engineering  The Ohio State University

MVC with Rails

Computer Science and Engineering  The Ohio State University

Directory Structure of Rails
depot/
..../app
......../controllers
......../helpers
......../models
......../views
............../layouts
..../components
..../config
..../db
..../doc
..../lib
..../log
..../public
..../script
..../test
..../tmp
..../vendor
....README
....Rakefile

Computer Science and Engineering  The Ohio State University

"Convention Over Configuration"

 Use naming & location conventions to
wire components together implicitly

 Explicit routing too, based on names
and pattern matching

 Contrast with:
 Configuration files (e.g., XML)
 Configuration code (e.g., Swing register

listener)
 Configuration tools (e.g., IDEs to connect

GUI widgets to code snippets)

Computer Science and Engineering  The Ohio State University

Wiring Parts Together in Rails

 Example: Event  Controller wiring
 HTTP GET request for URL /say/hello gets

routed to controller:
 Class called SayController
 File say_controller.rb in app/controllers
 Method hello

 Example: Controller  View wiring
 HTTP response formed from:

 File app/views/say/hello.html.erb

 Example: Model  Database wiring
 Class Order maps to database table "orders"
 Attributes of Order map to columns of table
 Instances of Order map to a rows of table

Computer Science and Engineering  The Ohio State University

Summary

 Programming Patterns
 Common idioms for solving categories of

problems
 Example: Observer pattern, MVC

 Separation of concerns
 Decouple state from business logic
 Decouple business logic from display

 Rails: Convention over configuration
 Parts are wired together based on naming

and structuring conventions
 Defaults can always be overridden (but

better not to fight!)

